BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33716122)

  • 1. Method for efficient soluble expression and purification of recombinant hyperactive Tn5 transposase.
    Xu T; Xiao M; Yu L
    Protein Expr Purif; 2021 Jul; 183():105866. PubMed ID: 33716122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Low-Cost NGS Library Preparation Using a Robust Tn5 Purification and Tagmentation Protocol.
    Hennig BP; Velten L; Racke I; Tu CS; Thoms M; Rybin V; Besir H; Remans K; Steinmetz LM
    G3 (Bethesda); 2018 Jan; 8(1):79-89. PubMed ID: 29118030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects.
    Picelli S; Björklund AK; Reinius B; Sagasser S; Winberg G; Sandberg R
    Genome Res; 2014 Dec; 24(12):2033-40. PubMed ID: 25079858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic Application of ATAC-Seq Based on Tn5 Transposase Purification Technology.
    Li W; Tim Wu U; Cheng Y; Huang Y; Mao L; Sun M; Qiu C; Zhou L; Gao L
    Genet Res (Camb); 2022; 2022():8429207. PubMed ID: 36062065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tn5 Transposase Applied in Genomics Research.
    Li N; Jin K; Bai Y; Fu H; Liu L; Liu B
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33172005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRACE-seq: Rapid, Low-Input, One-Tube RNA-seq Library Construction Based on Tagmentation of RNA/DNA Hybrids.
    Lu B; Yi C
    Curr Protoc; 2023 Apr; 3(4):e735. PubMed ID: 37014790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved genome sequencing using an engineered transposase.
    Kia A; Gloeckner C; Osothprarop T; Gormley N; Bomati E; Stephenson M; Goryshin I; He MM
    BMC Biotechnol; 2017 Jan; 17(1):6. PubMed ID: 28095828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple and novel method for RNA-seq library preparation of single cell cDNA analysis by hyperactive Tn5 transposase.
    Brouilette S; Kuersten S; Mein C; Bozek M; Terry A; Dias KR; Bhaw-Rosun L; Shintani Y; Coppen S; Ikebe C; Sawhney V; Campbell N; Kaneko M; Tano N; Ishida H; Suzuki K; Yashiro K
    Dev Dyn; 2012 Oct; 241(10):1584-90. PubMed ID: 22911638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The improvewment of DNA library construction in non-crosslinked chromatin immunoprecipitation coupled with next-generation sequencing].
    Peng A; Li Z; Zhang Y; Feng D; Hao B
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jun; 39(6):692-698. PubMed ID: 31270048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposase-assisted tagmentation of RNA/DNA hybrid duplexes.
    Lu B; Dong L; Yi D; Zhang M; Zhu C; Li X; Yi C
    Elife; 2020 Jul; 9():. PubMed ID: 32701057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput sequencing of insect specimens with sub-optimal DNA preservation using a practical, plate-based Illumina-compatible Tn5 transposase library preparation method.
    Cobb L; de Muinck E; Kollias S; Skage M; Gilfillan GD; Sydenham MAK; Qiao SW; Star B
    PLoS One; 2024; 19(3):e0300865. PubMed ID: 38517905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient low-cost chromatin profiling with CUT&Tag.
    Kaya-Okur HS; Janssens DH; Henikoff JG; Ahmad K; Henikoff S
    Nat Protoc; 2020 Oct; 15(10):3264-3283. PubMed ID: 32913232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G-quadruplex structures bind to EZ-Tn5 transposase.
    Cree SL; Chua EW; Crowther J; Dobson RCJ; Kennedy MA
    Biochimie; 2020 Oct; 177():190-197. PubMed ID: 32805304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CUT&Tag for efficient epigenomic profiling of small samples and single cells.
    Kaya-Okur HS; Wu SJ; Codomo CA; Pledger ES; Bryson TD; Henikoff JG; Ahmad K; Henikoff S
    Nat Commun; 2019 Apr; 10(1):1930. PubMed ID: 31036827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitated Large-Scale Sequence Validation Platform Using Tn5-Tagmented Cell Lysates.
    Hwang B; Heo S; Cho N; Seo H; Bang D
    ACS Synth Biol; 2019 Mar; 8(3):596-600. PubMed ID: 30726053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism for Tn5 inhibition. carboxyl-terminal dimerization.
    Mahnke Braam LA; Goryshin IY; Reznikoff WS
    J Biol Chem; 1999 Jan; 274(1):86-92. PubMed ID: 9867814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tn5 transposase loops DNA in the absence of Tn5 transposon end sequences.
    Adams CD; Schnurr B; Skoko D; Marko JF; Reznikoff WS
    Mol Microbiol; 2006 Dec; 62(6):1558-68. PubMed ID: 17074070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SALP, a new single-stranded DNA library preparation method especially useful for the high-throughput characterization of chromatin openness states.
    Wu J; Dai W; Wu L; Wang J
    BMC Genomics; 2018 Feb; 19(1):143. PubMed ID: 29439663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation sequencing library construction on a surface.
    Feng K; Costa J; Edwards JS
    BMC Genomics; 2018 May; 19(1):416. PubMed ID: 29848309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. qPCR-based characterization of DNA fragmentation efficiency of Tn5 transposomes.
    Rykalina V; Shadrin A; Lehrach H; Borodina T
    Biol Methods Protoc; 2017 Jan; 2(1):bpx001. PubMed ID: 32161784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.