BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33716168)

  • 1. Using computable knowledge mined from the literature to elucidate confounders for EHR-based pharmacovigilance.
    Malec SA; Wei P; Bernstam EV; Boyce RD; Cohen T
    J Biomed Inform; 2021 May; 117():103719. PubMed ID: 33716168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causal feature selection using a knowledge graph combining structured knowledge from the biomedical literature and ontologies: A use case studying depression as a risk factor for Alzheimer's disease.
    Malec SA; Taneja SB; Albert SM; Elizabeth Shaaban C; Karim HT; Levine AS; Munro P; Callahan TJ; Boyce RD
    J Biomed Inform; 2023 Jun; 142():104368. PubMed ID: 37086959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning in Causal Inference: Application in Pharmacovigilance.
    Zhao Y; Yu Y; Wang H; Li Y; Deng Y; Jiang G; Luo Y
    Drug Saf; 2022 May; 45(5):459-476. PubMed ID: 35579811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can statistical adjustment guided by causal inference improve the accuracy of effect estimation? A simulation and empirical research based on meta-analyses of case-control studies.
    Yan R; Liu T; Peng Y; Peng X
    BMC Med Inform Decis Mak; 2020 Dec; 20(1):333. PubMed ID: 33308213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Literature-Based Discovery of Confounding in Observational Clinical Data.
    Malec SA; Wei P; Xu H; Bernstam EV; Myneni S; Cohen T
    AMIA Annu Symp Proc; 2016; 2016():1920-1929. PubMed ID: 28269951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bias Due to Confounders for the Exposure-Competing Risk Relationship.
    Lesko CR; Lau B
    Epidemiology; 2017 Jan; 28(1):20-27. PubMed ID: 27748680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases.
    Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR
    Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Causal Inference in Medicine Part II. Directed acyclic graphs--a useful method for confounder selection, categorization of potential biases, and hypothesis specification].
    Suzuki E; Komatsu H; Yorifuji T; Yamamoto E; Doi H; Tsuda T
    Nihon Eiseigaku Zasshi; 2009 Sep; 64(4):796-805. PubMed ID: 19797848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation study on matched case-control designs in the perspective of causal diagrams.
    Li H; Yuan Z; Su P; Wang T; Yu Y; Sun X; Xue F
    BMC Med Res Methodol; 2016 Aug; 16(1):102. PubMed ID: 27543263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confounder selection strategies targeting stable treatment effect estimators.
    Loh WW; Vansteelandt S
    Stat Med; 2021 Feb; 40(3):607-630. PubMed ID: 33150645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of confounder selection.
    VanderWeele TJ
    Eur J Epidemiol; 2019 Mar; 34(3):211-219. PubMed ID: 30840181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confounding and regression adjustment in difference-in-differences studies.
    Zeldow B; Hatfield LA
    Health Serv Res; 2021 Oct; 56(5):932-941. PubMed ID: 33978956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables.
    Zawadzki RS; Grill JD; Gillen DL;
    BMC Med Res Methodol; 2023 May; 23(1):122. PubMed ID: 37217854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjusting for indirectly measured confounding using large-scale propensity score.
    Zhang L; Wang Y; Schuemie MJ; Blei DM; Hripcsak G
    J Biomed Inform; 2022 Oct; 134():104204. PubMed ID: 36108816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COVID-19 and the epistemology of epidemiological models at the dawn of AI.
    Ellison GTH
    Ann Hum Biol; 2020 Sep; 47(6):506-513. PubMed ID: 33228409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models.
    Wang C; Dominici F; Parmigiani G; Zigler CM
    Biometrics; 2015 Sep; 71(3):654-65. PubMed ID: 25899155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal inference for observational longitudinal studies using deep survival models.
    Zhu J; Gallego B
    J Biomed Inform; 2022 Jul; 131():104119. PubMed ID: 35714819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the definition of a confounder.
    VanderWeele TJ; Shpitser I
    Ann Stat; 2013 Feb; 41(1):196-220. PubMed ID: 25544784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.