BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 33716202)

  • 1. Reactive oxygen species (ROS): Critical roles in breast tumor microenvironment.
    Malla R; Surepalli N; Farran B; Malhotra SV; Nagaraju GP
    Crit Rev Oncol Hematol; 2021 Apr; 160():103285. PubMed ID: 33716202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROS-Responsive Nanomedicine: Towards Targeting the Breast Tumor Microenvironment.
    Malla RR; Kamal MA
    Curr Med Chem; 2021; 28(28):5674-5698. PubMed ID: 33297907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis.
    Liu W; Wang B; Zhou M; Liu D; Chen F; Zhao X; Lu Y
    Antioxid Redox Signal; 2023 Sep; 39(7-9):472-490. PubMed ID: 37002890
    [No Abstract]   [Full Text] [Related]  

  • 4. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms.
    Vedenko A; Panara K; Goldstein G; Ramasamy R; Arora H
    Adv Exp Med Biol; 2020; 1277():143-158. PubMed ID: 33119871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer.
    Zhong J; Tang Y
    Prog Biophys Mol Biol; 2024 May; 188():1-18. PubMed ID: 38387519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abundance of reactive oxygen species (ROS) is associated with tumor aggressiveness, immune response, and worse survival in breast cancer.
    Oshi M; Gandhi S; Yan L; Tokumaru Y; Wu R; Yamada A; Matsuyama R; Endo I; Takabe K
    Breast Cancer Res Treat; 2022 Jul; 194(2):231-241. PubMed ID: 35639264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer.
    Malla RR; Bhamidipati P; Adem M
    Biochem Pharmacol; 2023 Jun; 212():115565. PubMed ID: 37086811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-Tissue Fluorescence Imaging Study of Reactive Oxygen Species in a Tumor Microenvironment.
    Wu C; Mao Y; Wang X; Li P; Tang B
    Anal Chem; 2022 Jan; 94(1):165-176. PubMed ID: 34802229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities.
    Mehraj U; Ganai RA; Macha MA; Hamid A; Zargar MA; Bhat AA; Nasser MW; Haris M; Batra SK; Alshehri B; Al-Baradie RS; Mir MA; Wani NA
    Cell Oncol (Dordr); 2021 Dec; 44(6):1209-1229. PubMed ID: 34528143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment.
    Costa A; Scholer-Dahirel A; Mechta-Grigoriou F
    Semin Cancer Biol; 2014 Apr; 25():23-32. PubMed ID: 24406211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer.
    Deepak KGK; Vempati R; Nagaraju GP; Dasari VR; S N; Rao DN; Malla RR
    Pharmacol Res; 2020 Mar; 153():104683. PubMed ID: 32050092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of reactive oxygen species in tumors based on the 'seed and soil' theory: A complex interaction (Review).
    Liang W; He X; Bi J; Hu T; Sun Y
    Oncol Rep; 2021 Sep; 46(3):. PubMed ID: 34328200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune cell - produced ROS and their impact on tumor growth and metastasis.
    Kennel KB; Greten FR
    Redox Biol; 2021 Jun; 42():101891. PubMed ID: 33583736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend?
    Kuo CL; Ponneri Babuharisankar A; Lin YC; Lien HW; Lo YK; Chou HY; Tangeda V; Cheng LC; Cheng AN; Lee AY
    J Biomed Sci; 2022 Sep; 29(1):74. PubMed ID: 36154922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics.
    Akinsipe T; Mohamedelhassan R; Akinpelu A; Pondugula SR; Mistriotis P; Avila LA; Suryawanshi A
    Front Immunol; 2024; 15():1302587. PubMed ID: 38533507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of tumor lethality of ROS in photodynamic therapy.
    Ming L; Cheng K; Chen Y; Yang R; Chen D
    Cancer Med; 2021 Jan; 10(1):257-268. PubMed ID: 33141513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast Tumor Microenvironment: Emerging target of therapeutic phytochemicals.
    Malla RR; Deepak K; Merchant N; Dasari VR
    Phytomedicine; 2020 Apr; 70():153227. PubMed ID: 32339885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic deregulation in breast cancer microenvironment: Implications for tumor progression and therapeutic strategies.
    Trnkova L; Buocikova V; Mego M; Cumova A; Burikova M; Bohac M; Miklikova S; Cihova M; Smolkova B
    Biomed Pharmacother; 2024 May; 174():116559. PubMed ID: 38603889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trisulfide linked cholesteryl PEG conjugate attenuates intracellular ROS and collagen-1 production in a breast cancer co-culture model.
    Dao NV; Ercole F; Urquhart MC; Kaminskas LM; Nowell CJ; Davis TP; Sloan EK; Whittaker MR; Quinn JF
    Biomater Sci; 2021 Feb; 9(3):835-846. PubMed ID: 33231231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.