These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 33716261)
61. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging. Karunakaran C; Lahlali R; Zhu N; Webb AM; Schmidt M; Fransishyn K; Belev G; Wysokinski T; Olson J; Cooper DM; Hallin E Sci Rep; 2015 Jul; 5():12119. PubMed ID: 26183486 [TBL] [Abstract][Full Text] [Related]
62. Synchrotron radiation microbeam X-ray fluorescence analysis of zinc concentration in remineralized enamel in situ. Matsunaga T; Ishizaki H; Tanabe S; Hayashi Y Arch Oral Biol; 2009 May; 54(5):420-3. PubMed ID: 19237151 [TBL] [Abstract][Full Text] [Related]
63. Effect of lyophilized chive ( Park SY; Kim HY Food Chem X; 2022 Mar; 13():100216. PubMed ID: 35498993 [TBL] [Abstract][Full Text] [Related]
64. Medical applications of synchrotron radiation. Suortti P; Thomlinson W Phys Med Biol; 2003 Jul; 48(13):R1-35. PubMed ID: 12884920 [TBL] [Abstract][Full Text] [Related]
65. Transcriptome analysis reveals the genes involved in S-alk(en)ylcysteine sulfoxide biosynthesis and its biosynthetic location in postharvest chive (Allium schoenoprasum L.). Dai X; Yu Z Food Res Int; 2022 Aug; 158():111548. PubMed ID: 35840242 [TBL] [Abstract][Full Text] [Related]
66. Synchrotron X-ray imaging for nondestructive monitoring of sap flow dynamics through xylem vessel elements in rice leaves. Kim HK; Lee SJ New Phytol; 2010 Dec; 188(4):1085-98. PubMed ID: 20735745 [TBL] [Abstract][Full Text] [Related]
67. Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. Moore KL; Chen Y; van de Meene AML; Hughes L; Liu W; Geraki T; Mosselmans F; McGrath SP; Grovenor C; Zhao FJ New Phytol; 2014 Jan; 201(1):104-115. PubMed ID: 24107000 [TBL] [Abstract][Full Text] [Related]
68. Assessment of willow (Salix sp.) as a woody heavy metal accumulator: field survey and in vivo X-ray analyses. Harada E; Hokura A; Nakai I; Terada Y; Baba K; Yazaki K; Shiono M; Mizuno N; Mizuno T Metallomics; 2011 Dec; 3(12):1340-6. PubMed ID: 21969005 [TBL] [Abstract][Full Text] [Related]
69. Experimental optimisation of the X-ray energy in microbeam radiation therapy. Livingstone J; Stevenson AW; Häusermann D; Adam JF Phys Med; 2018 Jan; 45():156-161. PubMed ID: 29472081 [TBL] [Abstract][Full Text] [Related]
70. Physiological responses of plants to in vivo X-ray damage from X-ray fluorescence measurements: insights from anatomical, elemental, histochemical, and ultrastructural analyses. Montanha GS; Marques JPR; Santos E; Jones MWM; de Carvalho HWP Metallomics; 2023 Jun; 15(6):. PubMed ID: 37218709 [TBL] [Abstract][Full Text] [Related]
71. De Novo Assembly and Annotation of the Chinese Chive (Allium tuberosum Rottler ex Spr.) Transcriptome Using the Illumina Platform. Zhou SM; Chen LM; Liu SQ; Wang XF; Sun XD PLoS One; 2015; 10(7):e0133312. PubMed ID: 26204518 [TBL] [Abstract][Full Text] [Related]
72. Unveiling responses and mechanisms of spice crop chive exposure to three typical pesticides using metabolomics combined with transcriptomics, physiology and biochemistry. Dong Y; Li J; Guo Z; Han L; Zhao J; Wu X; Chen X Sci Total Environ; 2024 Sep; 954():176285. PubMed ID: 39288875 [TBL] [Abstract][Full Text] [Related]
73. Chinese chives and garlic in intercropping in strawberry high tunnels for Hata FT; Ventura MU; Béga VL; Camacho IM; de Paula MT Bull Entomol Res; 2019 Aug; 109(4):419-425. PubMed ID: 29734954 [TBL] [Abstract][Full Text] [Related]
74. An innovative strategy for control of fungus gnats using entomopathogenic nematodes alone or in combination with waterlogging. Chen C; Ma H; Ma M; Li J; Zheng S; Song Q; Gu X; Shapiro-Ilan D; Ruan W J Nematol; 2020; 52():1-9. PubMed ID: 32628823 [TBL] [Abstract][Full Text] [Related]
75. Visualizing mineralization processes and fossil anatomy using synchronous synchrotron X-ray fluorescence and X-ray diffraction mapping. Gueriau P; Réguer S; Leclercq N; Cupello C; Brito PM; Jauvion C; Morel S; Charbonnier S; Thiaudière D; Mocuta C J R Soc Interface; 2020 Aug; 17(169):20200216. PubMed ID: 32842887 [TBL] [Abstract][Full Text] [Related]
76. Grazing exit micro X-ray fluorescence analysis of a hazardous metal attached to a plant leaf surface using an X-ray absorber method. Awane T; Fukuoka S; Nakamachi K; Tsuji K Anal Chem; 2009 May; 81(9):3356-64. PubMed ID: 19402720 [TBL] [Abstract][Full Text] [Related]
77. Synchrotron X-ray Fluorescence Technique Identifies Contribution of Node Iron and Zinc Accumulations to the Grain of Wheat. Guo Z; Wang X; Zhang X; Wang L; Wang R; Hui X; Wang S; Chen Y; White PJ; Shi M; Wang Z J Agric Food Chem; 2022 Aug; 70(30):9346-9355. PubMed ID: 35852475 [TBL] [Abstract][Full Text] [Related]
78. Dose profiles and x-ray energy optimization for microbeam radiation therapy by high-dose, high resolution dosimetry using Sm-doped fluoroaluminate glass plates and Monte Carlo transport simulation. Chicilo F; Hanson AL; Geisler FH; Belev G; Edgar A; Ramaswami KO; Chapman D; Kasap SO Phys Med Biol; 2020 Apr; 65(7):075010. PubMed ID: 32242527 [TBL] [Abstract][Full Text] [Related]
79. Abridged spectral matrix inversion: parametric fitting of X-ray fluorescence spectra following integrative data reduction. Crawford AM; Huntsman B; Weng MY; Ponomarenko O; Kiani CD; George SJ; George GN; Pickering IJ J Synchrotron Radiat; 2021 Nov; 28(Pt 6):1881-1890. PubMed ID: 34738943 [TBL] [Abstract][Full Text] [Related]
80. Intratumoral Visualization of Oxaliplatin within a Liposomal Formulation Using X-ray Fluorescence Spectrometry. Ando H; Abu Lila AS; Tanaka M; Doi Y; Terada Y; Yagi N; Shimizu T; Okuhira K; Ishima Y; Ishida T Mol Pharm; 2018 Feb; 15(2):403-409. PubMed ID: 29287147 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]