These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33716623)

  • 21. Controlling the Regioselectivity of Baeyer-Villiger Monooxygenases by Mutation of Active-Site Residues.
    Balke K; Bäumgen M; Bornscheuer UT
    Chembiochem; 2017 Aug; 18(16):1627-1638. PubMed ID: 28504873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for rapid screening of ketone biotransformations: detection of whole cell Baeyer-Villiger monooxygenase activity.
    Linares-Pastén JA; Chávez-Lizárraga G; Villagomez R; Mamo G; Hatti-Kaul R
    Enzyme Microb Technol; 2012 Feb; 50(2):101-6. PubMed ID: 22226195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.
    Willrodt C; Halan B; Karthaus L; Rehdorf J; Julsing MK; Buehler K; Schmid A
    Biotechnol Bioeng; 2017 Feb; 114(2):281-290. PubMed ID: 27530691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous biocatalyst production and Baeyer-Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase.
    Lee WH; Park YC; Lee DH; Park K; Seo JH
    Appl Biochem Biotechnol; 2005; 121-124():827-36. PubMed ID: 15930562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two enzymes of a complete degradation pathway for linear alkylbenzenesulfonate (LAS) surfactants: 4-sulfoacetophenone Baeyer-Villiger monooxygenase and 4-sulfophenylacetate esterase in Comamonas testosteroni KF-1.
    Weiss M; Denger K; Huhn T; Schleheck D
    Appl Environ Microbiol; 2012 Dec; 78(23):8254-63. PubMed ID: 23001656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning, Baeyer-Villiger biooxidations, and structures of the camphor pathway 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase of Pseudomonas putida ATCC 17453.
    Leisch H; Shi R; Grosse S; Morley K; Bergeron H; Cygler M; Iwaki H; Hasegawa Y; Lau PC
    Appl Environ Microbiol; 2012 Apr; 78(7):2200-12. PubMed ID: 22267661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid.
    Seo EJ; Kang CW; Woo JM; Jang S; Yeon YJ; Jung GY; Park JB
    Metab Eng; 2019 Jul; 54():137-144. PubMed ID: 30953778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial monooxygenase amperometric biosensor for monitoring of Baeyer-Villiger biotransformation.
    Schenkmayerová A; Bučko M; Gemeiner P; Katrlík J
    Biosens Bioelectron; 2013 Dec; 50():235-8. PubMed ID: 23871870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.
    Lee WH; Park JB; Park K; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):329-38. PubMed ID: 17541782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors.
    Karande R; Halan B; Schmid A; Buehler K
    Biotechnol Bioeng; 2014 Sep; 111(9):1831-40. PubMed ID: 24729096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery and Engineering of a Novel Baeyer-Villiger Monooxygenase with High Normal Regioselectivity.
    Zhang GX; You ZN; Yu JM; Liu YY; Pan J; Xu JH; Li CX
    Chembiochem; 2021 Apr; 22(7):1190-1195. PubMed ID: 33205522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinformatic Mining and Structure-Activity Profiling of Baeyer-Villiger Monooxygenases from Mycobacterium tuberculosis.
    Tomas N; Leonelli D; Campoy M; Marthey S; Le NH; Rengel D; Martin V; Pál A; Korduláková J; Eynard N; Guillet V; Mourey L; Daffé M; Lemassu A; André G; Marrakchi H
    mSphere; 2022 Apr; 7(2):e0048221. PubMed ID: 35296143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol.
    Hoschek A; Heuschkel I; Schmid A; Bühler B; Karande R; Bühler K
    Bioresour Technol; 2019 Jun; 282():171-178. PubMed ID: 30861446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid.
    Seo JH; Kim HH; Jeon EY; Song YH; Shin CS; Park JB
    Sci Rep; 2016 Jun; 6():28223. PubMed ID: 27311560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data on mixed trophies biofilm for continuous cyclohexane oxidation to cyclohexanol using
    Heuschkel I; Hoschek A; Schmid A; Bühler B; Karande R; Bühler K
    Data Brief; 2019 Aug; 25():104059. PubMed ID: 31211205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery and Characterization of a Baeyer-Villiger Monooxygenase Using Sequence Similarity Network Analysis.
    Sakoleva T; Austin HP; Tzima C; Dörr M; Bornscheuer UT
    Chembiochem; 2023 May; 24(10):e202200746. PubMed ID: 36919491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Baeyer-Villiger monooxygenases in aroma compound synthesis.
    Fink MJ; Rudroff F; Mihovilovic MD
    Bioorg Med Chem Lett; 2011 Oct; 21(20):6135-8. PubMed ID: 21900007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilization of Baeyer-Villiger monooxygenase from acetone grown Fusarium sp.
    Takagi M; T Sriwong K; Masuda A; Kawaguchi N; Fukui S; Le Viet LH; Kato DI; Kitayama T; Fujii M; Koesoema AA; Matsuda T
    Biotechnol Lett; 2022 Mar; 44(3):461-471. PubMed ID: 35083583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperadherence of Pseudomonas taiwanensis VLB120ΔC increases productivity of (S)-styrene oxide formation.
    Schmutzler K; Kupitz K; Schmid A; Buehler K
    Microb Biotechnol; 2017 Jul; 10(4):735-744. PubMed ID: 27411543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active site variants provide insight into the nature of conformational changes that accompany the cyclohexanone monooxygenase catalytic cycle.
    Fordwour OB; Wolthers KR
    Arch Biochem Biophys; 2018 Sep; 654():85-96. PubMed ID: 30030997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.