These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33716623)

  • 41. Light-driven redox biocatalysis on gram-scale in Synechocystis sp. PCC 6803 via an in vivo cascade.
    Tüllinghoff A; Djaya-Mbissam H; Toepel J; Bühler B
    Plant Biotechnol J; 2023 Oct; 21(10):2074-2083. PubMed ID: 37439151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis.
    Yachnin BJ; McEvoy MB; MacCuish RJ; Morley KL; Lau PC; Berghuis AM
    ACS Chem Biol; 2014 Dec; 9(12):2843-51. PubMed ID: 25265531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biotransformation of dehydro-epi-androsterone by Aspergillus parasiticus: Metabolic evidences of BVMO activity.
    Mascotti ML; Palazzolo MA; Bisogno FR; Kurina-Sanz M
    Steroids; 2016 May; 109():44-9. PubMed ID: 27025973
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone.
    Parra LP; Acevedo JP; Reetz MT
    Biotechnol Bioeng; 2015 Jul; 112(7):1354-64. PubMed ID: 25675885
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development and Quantitation of
    Zhang Y; Zhao J; Cheng H; Wang J; Yang L; Liang H
    Bio Protoc; 2021 Aug; 11(16):e4126. PubMed ID: 34541044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enantioselective sulfoxidations employing the thermostable cyclohexanone monooxygenase from Thermocrispum municipale.
    de Gonzalo G; Franconetti A
    Enzyme Microb Technol; 2018 Jun; 113():24-28. PubMed ID: 29602383
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones.
    Peters C; Rudroff F; Mihovilovic MD; T Bornscheuer U
    Biol Chem; 2017 Jan; 398(1):31-37. PubMed ID: 27289001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides.
    Zhang Y; Liu F; Xu N; Wu YQ; Zheng YC; Zhao Q; Lin G; Yu HL; Xu JH
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced production of ε-caprolactone by coexpression of bacterial hemoglobin gene in recombinant Escherichia coli expressing cyclohexanone monooxygenase gene.
    Lee WH; Park EH; Kim MD
    J Microbiol Biotechnol; 2014 Dec; 24(12):1685-9. PubMed ID: 25269815
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rational Engineering of a Multi-Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in Pseudomonas taiwanensis.
    Schäfer L; Bühler K; Karande R; Bühler B
    Biotechnol J; 2020 Nov; 15(11):e2000091. PubMed ID: 32735401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of disulfide bond introduction and related Cys/Ser mutations on the stability of a cyclohexanone monooxygenase.
    Schmidt S; Genz M; Balke K; Bornscheuer UT
    J Biotechnol; 2015 Nov; 214():199-211. PubMed ID: 26410456
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of chemoenzymatic Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone using response surface methodology.
    Zhang Y; Jiang W; Lv K; Sun Y; Gao X; Zhao Q; Ren W; Wang F; Liu J
    Biotechnol Prog; 2020 Jan; 36(1):e2901. PubMed ID: 31465150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation.
    Yachnin BJ; Sprules T; McEvoy MB; Lau PC; Berghuis AM
    J Am Chem Soc; 2012 May; 134(18):7788-95. PubMed ID: 22506764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors.
    Halan B; Schmid A; Buehler K
    Biotechnol Bioeng; 2010 Jul; 106(4):516-27. PubMed ID: 20229513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosolids recycling impact on biofilm extracellular enzyme activity and performance of hybrid rotating biological reactors.
    Hassard F; Biddle J; Cartmell E; Coulon F; Stephenson T
    Sci Total Environ; 2020 Mar; 706():135865. PubMed ID: 31846875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Baeyer-Villiger oxidation of progesterone by Aspergillus sojae PTCC 5196.
    Javid M; Nickavar B; Vahidi H; Faramarzi MA
    Steroids; 2018 Dec; 140():52-57. PubMed ID: 30055193
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On oxygen limitation in a whole cell biocatalytic Baeyer-Villiger oxidation process.
    Baldwin CV; Woodley JM
    Biotechnol Bioeng; 2006 Oct; 95(3):362-9. PubMed ID: 16862597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cloning, expression, and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli.
    Kirschner A; Altenbuchner J; Bornscheuer UT
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1065-72. PubMed ID: 16944127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.