BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 33716705)

  • 41. Calcium, ageing, and neuronal vulnerability in Parkinson's disease.
    Surmeier DJ
    Lancet Neurol; 2007 Oct; 6(10):933-8. PubMed ID: 17884683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potassium channels and their emerging role in parkinson's disease.
    Zhang L; Zheng Y; Xie J; Shi L
    Brain Res Bull; 2020 Jul; 160():1-7. PubMed ID: 32305406
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcium, Bioenergetics, and Parkinson's Disease.
    Zampese E; Surmeier DJ
    Cells; 2020 Sep; 9(9):. PubMed ID: 32911641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons.
    Mosharov EV; Larsen KE; Kanter E; Phillips KA; Wilson K; Schmitz Y; Krantz DE; Kobayashi K; Edwards RH; Sulzer D
    Neuron; 2009 Apr; 62(2):218-29. PubMed ID: 19409267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endogenous calcium buffering capacity of substantia nigral dopamine neurons.
    Foehring RC; Zhang XF; Lee JC; Callaway JC
    J Neurophysiol; 2009 Oct; 102(4):2326-33. PubMed ID: 19675297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease.
    Surmeier DJ; Halliday GM; Simuni T
    Exp Neurol; 2017 Dec; 298(Pt B):202-209. PubMed ID: 28780195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. What causes the death of dopaminergic neurons in Parkinson's disease?
    Surmeier DJ; Guzman JN; Sanchez-Padilla J; Goldberg JA
    Prog Brain Res; 2010; 183():59-77. PubMed ID: 20696315
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease.
    Matschke LA; Komadowski MA; Stöhr A; Lee B; Henrich MT; Griesbach M; Rinné S; Geibl FF; Chiu WH; Koprich JB; Brotchie JM; Kiper AK; Dolga AM; Oertel WH; Decher N
    Sci Rep; 2022 Feb; 12(1):3180. PubMed ID: 35210472
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease.
    Yue X; Hariri DJ; Caballero B; Zhang S; Bartlett MJ; Kaut O; Mount DW; Wüllner U; Sherman SJ; Falk T
    Neuroscience; 2014 Jan; 258():385-400. PubMed ID: 24291725
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta.
    Yee AG; Forbes B; Cheung PY; Martini A; Burrell MH; Freestone PS; Lipski J
    J Neurochem; 2019 Feb; 148(4):462-479. PubMed ID: 30203851
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The origins of oxidant stress in Parkinson's disease and therapeutic strategies.
    Surmeier DJ; Guzman JN; Sanchez-Padilla J; Goldberg JA
    Antioxid Redox Signal; 2011 Apr; 14(7):1289-301. PubMed ID: 20712409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aldehyde Dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson's disease.
    Cai H; Liu G; Sun L; Ding J
    Transl Neurodegener; 2014; 3():27. PubMed ID: 25705376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Repulsive Guidance Molecule a (RGMa) Induces Neuropathological and Behavioral Changes That Closely Resemble Parkinson's Disease.
    Korecka JA; Moloney EB; Eggers R; Hobo B; Scheffer S; Ras-Verloop N; Pasterkamp RJ; Swaab DF; Smit AB; van Kesteren RE; Bossers K; Verhaagen J
    J Neurosci; 2017 Sep; 37(39):9361-9379. PubMed ID: 28842419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TRPV4 contributes to ER stress and inflammation: implications for Parkinson's disease.
    Liu N; Bai L; Lu Z; Gu R; Zhao D; Yan F; Bai J
    J Neuroinflammation; 2022 Jan; 19(1):26. PubMed ID: 35093118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Are ion channels potential therapeutic targets for Parkinson's disease?
    Daniel NH; Aravind A; Thakur P
    Neurotoxicology; 2021 Dec; 87():243-257. PubMed ID: 34699791
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dopamine neuronal protection in the mouse Substantia nigra by GHSR is independent of electric activity.
    Stutz B; Nasrallah C; Nigro M; Curry D; Liu ZW; Gao XB; Elsworth JD; Mintz L; Horvath TL
    Mol Metab; 2019 Jun; 24():120-138. PubMed ID: 30833218
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta.
    Aumann TD; Gantois I; Egan K; Vais A; Tomas D; Drago J; Horne MK
    Exp Neurol; 2008 Oct; 213(2):419-30. PubMed ID: 18680743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study.
    Knowlton C; Kutterer S; Roeper J; Canavier CC
    J Neurophysiol; 2018 Jan; 119(1):84-95. PubMed ID: 28978764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. L-type Ca
    Hotka M; Cagalinec M; Hilber K; Hool L; Boehm S; Kubista H
    Sci Signal; 2020 Feb; 13(618):. PubMed ID: 32047116
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calpain activation and progression of inflammatory cycles in Parkinson's disease.
    Gao A; McCoy HM; Zaman V; Shields DC; Banik NL; Haque A
    Front Biosci (Landmark Ed); 2022 Jan; 27(1):20. PubMed ID: 35090325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.