These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 33716961)

  • 1. Upstream Regulators of Fibroblast Growth Factor 23.
    Ratsma DMA; Zillikens MC; van der Eerden BCJ
    Front Endocrinol (Lausanne); 2021; 12():588096. PubMed ID: 33716961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGF23 and Hypophosphatemic Rickets/Osteomalacia.
    Takashi Y; Kawanami D; Fukumoto S
    Curr Osteoporos Rep; 2021 Dec; 19(6):669-675. PubMed ID: 34755323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenic role of Fgf23 in Dmp1-null mice.
    Liu S; Zhou J; Tang W; Menard R; Feng JQ; Quarles LD
    Am J Physiol Endocrinol Metab; 2008 Aug; 295(2):E254-61. PubMed ID: 18559986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis.
    Edmonston D; Wolf M
    Nat Rev Nephrol; 2020 Jan; 16(1):7-19. PubMed ID: 31519999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in understanding of phosphate homeostasis and related disorders.
    Michigami T
    Endocr J; 2022 Aug; 69(8):881-896. PubMed ID: 35831119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-Linked Hypophosphatemia and FGF23-Related Hypophosphatemic Diseases: Prospect for New Treatment.
    Kinoshita Y; Fukumoto S
    Endocr Rev; 2018 Jun; 39(3):274-291. PubMed ID: 29381780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF23-related hypophosphatemic rickets/osteomalacia: diagnosis and new treatment.
    Fukumoto S
    J Mol Endocrinol; 2021 Feb; 66(2):R57-R65. PubMed ID: 33295878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.
    Wolf M; White KE
    Curr Opin Nephrol Hypertens; 2014 Jul; 23(4):411-9. PubMed ID: 24867675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice.
    Farrow EG; Yu X; Summers LJ; Davis SI; Fleet JC; Allen MR; Robling AG; Stayrook KR; Jideonwo V; Magers MJ; Garringer HJ; Vidal R; Chan RJ; Goodwin CB; Hui SL; Peacock M; White KE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):E1146-55. PubMed ID: 22006328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice.
    Liu S; Tang W; Zhou J; Vierthaler L; Quarles LD
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1636-44. PubMed ID: 17848631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of FGF23: Beyond Bone.
    Simic P; Babitt JL
    Curr Osteoporos Rep; 2021 Dec; 19(6):563-573. PubMed ID: 34757587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.
    Clinkenbeard EL; Farrow EG; Summers LJ; Cass TA; Roberts JL; Bayt CA; Lahm T; Albrecht M; Allen MR; Peacock M; White KE
    J Bone Miner Res; 2014 Feb; 29(2):361-9. PubMed ID: 23873717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells.
    Ichikawa S; Austin AM; Gray AK; Econs MJ
    J Bone Miner Res; 2012 Feb; 27(2):453-60. PubMed ID: 22006791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism.
    Gattineni J; Baum M
    Pediatr Nephrol; 2010 Apr; 25(4):591-601. PubMed ID: 19669798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment.
    Endo I; Fukumoto S; Ozono K; Namba N; Inoue D; Okazaki R; Yamauchi M; Sugimoto T; Minagawa M; Michigami T; Nagai M; Matsumoto T
    Endocr J; 2015; 62(9):811-6. PubMed ID: 26135520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia.
    Feng JQ; Clinkenbeard EL; Yuan B; White KE; Drezner MK
    Bone; 2013 Jun; 54(2):213-21. PubMed ID: 23403405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway.
    Rowe PS
    Crit Rev Eukaryot Gene Expr; 2012; 22(1):61-86. PubMed ID: 22339660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Regulation and disorders of calcium and phosphate metabolism].
    Michigami T
    Clin Calcium; 2014 Feb; 24(2):169-75. PubMed ID: 24473349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical performance of a novel chemiluminescent enzyme immunoassay for FGF23.
    Ito N; Kubota T; Kitanaka S; Fujiwara I; Adachi M; Takeuchi Y; Yamagami H; Kimura T; Shinoda T; Minagawa M; Okazaki R; Ozono K; Seino Y; Fukumoto S
    J Bone Miner Metab; 2021 Nov; 39(6):1066-1075. PubMed ID: 34255195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineralized tissues in hypophosphatemic rickets.
    Robinson ME; AlQuorain H; Murshed M; Rauch F
    Pediatr Nephrol; 2020 Oct; 35(10):1843-1854. PubMed ID: 31392510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.