These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 33716961)

  • 21. Osteocyte-specific deletion of Fgfr1 suppresses FGF23.
    Xiao Z; Huang J; Cao L; Liang Y; Han X; Quarles LD
    PLoS One; 2014; 9(8):e104154. PubMed ID: 25089825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Rickets/Osteomalacia. Anti-FGF23 antibody therapy in patients with FGF23-related hypophosphatemic rickets and osteomalacia.].
    Kinoshita Y
    Clin Calcium; 2018; 28(10):1373-1379. PubMed ID: 30269120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.
    Ichikawa S; Gray AK; Padgett LR; Allen MR; Clinkenbeard EL; Sarpa NM; White KE; Econs MJ
    Endocrinology; 2014 Oct; 155(10):3891-8. PubMed ID: 25051439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Iron-Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets.
    Imel EA; Liu Z; Coffman M; Acton D; Mehta R; Econs MJ
    J Bone Miner Res; 2020 Feb; 35(2):231-238. PubMed ID: 31652009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets.
    Razali NN; Hwu TT; Thilakavathy K
    J Pediatr Endocrinol Metab; 2015 Sep; 28(9-10):1009-17. PubMed ID: 25894638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization.
    Liu S; Gupta A; Quarles LD
    Curr Opin Nephrol Hypertens; 2007 Jul; 16(4):329-35. PubMed ID: 17565275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans.
    Imel EA; Peacock M; Gray AK; Padgett LR; Hui SL; Econs MJ
    J Clin Endocrinol Metab; 2011 Nov; 96(11):3541-9. PubMed ID: 21880793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Congenital Conditions of Hypophosphatemia Expressed in Adults.
    Marcucci G; Brandi ML
    Calcif Tissue Int; 2021 Jan; 108(1):91-103. PubMed ID: 32409880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and KLOTHO.
    Xiao L; Naganawa T; Lorenzo J; Carpenter TO; Coffin JD; Hurley MM
    J Biol Chem; 2010 Jan; 285(4):2834-46. PubMed ID: 19933269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling.
    Martin A; Liu S; David V; Li H; Karydis A; Feng JQ; Quarles LD
    FASEB J; 2011 Aug; 25(8):2551-62. PubMed ID: 21507898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The wrickkened pathways of FGF23, MEPE and PHEX.
    Rowe PS
    Crit Rev Oral Biol Med; 2004 Sep; 15(5):264-81. PubMed ID: 15470265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anti-fibroblast growth factor 23 antibody therapy.
    Fukumoto S
    Curr Opin Nephrol Hypertens; 2014 Jul; 23(4):346-51. PubMed ID: 24848934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of calcimimetic R568 and calcitriol in mineral homeostasis in the Hyp mouse, a murine homolog of X-linked hypophosphatemia.
    Leifheit-Nestler M; Kucka J; Yoshizawa E; Behets G; D'Haese P; Bergen C; Meier M; Fischer DC; Haffner D
    Bone; 2017 Oct; 103():224-232. PubMed ID: 28728941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antenatal iron supplementation, FGF23, and bone metabolism in Kenyan women and their offspring: secondary analysis of a randomized controlled trial.
    Braithwaite VS; Mwangi MN; Jones KS; Demir AY; Prentice A; Prentice AM; Andang'o PEA; Verhoef H
    Am J Clin Nutr; 2021 May; 113(5):1104-1114. PubMed ID: 33675347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Epidemiology of FGF23-related hypophosophatemic diseases].
    Endo I
    Clin Calcium; 2016 Feb; 26(2):223-31. PubMed ID: 26813502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hypophosphatemic osteomalacia and bone sclerosis caused by a novel homozygous mutation of the FAM20C gene in an elderly man with a mild variant of Raine syndrome.
    Takeyari S; Yamamoto T; Kinoshita Y; Fukumoto S; Glorieux FH; Michigami T; Hasegawa K; Kitaoka T; Kubota T; Imanishi Y; Shimotsuji T; Ozono K
    Bone; 2014 Oct; 67():56-62. PubMed ID: 24982027
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Al Rifai O; Susan-Resiga D; Essalmani R; Creemers JWM; Seidah NG; Ferron M
    Front Endocrinol (Lausanne); 2021; 12():690681. PubMed ID: 34149625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Congenital Conditions of Hypophosphatemia in Children.
    Imel EA
    Calcif Tissue Int; 2021 Jan; 108(1):74-90. PubMed ID: 32328695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Bone and Calcium Research Update 2015. Novel treatment for FGF23-related hypophosphatemic diseases].
    Fukumoto S
    Clin Calcium; 2015 Jan; 25(1):37-44. PubMed ID: 25530521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia.
    Lim YH; Ovejero D; Sugarman JS; Deklotz CM; Maruri A; Eichenfield LF; Kelley PK; Jüppner H; Gottschalk M; Tifft CJ; Gafni RI; Boyce AM; Cowen EW; Bhattacharyya N; Guthrie LC; Gahl WA; Golas G; Loring EC; Overton JD; Mane SM; Lifton RP; Levy ML; Collins MT; Choate KA
    Hum Mol Genet; 2014 Jan; 23(2):397-407. PubMed ID: 24006476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.