These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 33717429)
1. Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks. Jeong W; Kim MK; Kang HW J Tissue Eng; 2021; 12():2041731421997091. PubMed ID: 33717429 [TBL] [Abstract][Full Text] [Related]
2. Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties. Kim MK; Jeong W; Lee SM; Kim JB; Jin S; Kang HW Biofabrication; 2020 Jan; 12(2):025003. PubMed ID: 31783385 [TBL] [Abstract][Full Text] [Related]
3. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
4. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Seo Y; Jung Y; Kim SH Acta Biomater; 2018 Feb; 67():270-281. PubMed ID: 29223704 [TBL] [Abstract][Full Text] [Related]
5. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing. Zhao F; Cheng J; Zhang J; Yu H; Dai W; Yan W; Sun M; Ding G; Li Q; Meng Q; Liu Q; Duan X; Hu X; Ao Y Acta Biomater; 2021 Sep; 131():262-275. PubMed ID: 34157451 [TBL] [Abstract][Full Text] [Related]
6. 3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks. Wang B; Barceló X; Von Euw S; Kelly DJ Mater Today Bio; 2023 Jun; 20():100624. PubMed ID: 37122835 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinting of dECM-incorporated hepatocyte spheroid for simultaneous promotion of cell-cell and -ECM interactions. Kim MK; Jeong W; Jeon S; Kang HW Front Bioeng Biotechnol; 2023; 11():1305023. PubMed ID: 38026892 [TBL] [Abstract][Full Text] [Related]
8. A potential dermal substitute using decellularized dermis extracellular matrix derived bio-ink. Won JY; Lee MH; Kim MJ; Min KH; Ahn G; Han JS; Jin S; Yun WS; Shim JH Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):644-649. PubMed ID: 30873886 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Sahranavard M; Sarkari S; Safavi S; Ghorbani F Biomater Transl; 2022; 3(2):105-115. PubMed ID: 36105562 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering. Lee SJ; Lee JH; Park J; Kim WD; Park SA Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785023 [TBL] [Abstract][Full Text] [Related]
11. Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity. Liguori GR; Liguori TTA; de Moraes SR; Sinkunas V; Terlizzi V; van Dongen JA; Sharma PK; Moreira LFP; Harmsen MC Front Bioeng Biotechnol; 2020; 8():520. PubMed ID: 32548106 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mao Q; Wang Y; Li Y; Juengpanich S; Li W; Chen M; Yin J; Fu J; Cai X Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110625. PubMed ID: 32228893 [TBL] [Abstract][Full Text] [Related]
13. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Fatimi A; Okoro OV; Podstawczyk D; Siminska-Stanny J; Shavandi A Gels; 2022 Mar; 8(3):. PubMed ID: 35323292 [TBL] [Abstract][Full Text] [Related]
14. Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins. Elomaa L; Almalla A; Keshi E; Hillebrandt KH; Sauer IM; Weinhart M Biomater Biosyst; 2023 Dec; 12():100084. PubMed ID: 38035034 [TBL] [Abstract][Full Text] [Related]
15. High-cytocompatible semi-IPN bio-ink with wide molecular weight distribution for extrusion 3D bioprinting. Li M; Shi T; Yao D; Yue X; Wang H; Liu K Sci Rep; 2022 Apr; 12(1):6349. PubMed ID: 35428800 [TBL] [Abstract][Full Text] [Related]
16. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting. Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications. Sultan MT; Lee OJ; Lee JS; Park CH Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551978 [TBL] [Abstract][Full Text] [Related]
18. The Design and Characterization of a Strong Bio-Ink for Meniscus Regeneration. Lu J; Huang J; Jin J; Xie C; Xue B; Lai J; Cheng B; Li L; Jiang Q Int J Bioprint; 2022; 8(4):600. PubMed ID: 36483752 [TBL] [Abstract][Full Text] [Related]
19. Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Bashiri Z; Amiri I; Gholipourmalekabadi M; Falak R; Asgari H; Maki CB; Moghaddaszadeh A; Koruji M Biomater Sci; 2021 May; 9(9):3465-3484. PubMed ID: 33949391 [TBL] [Abstract][Full Text] [Related]
20. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]