These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Chloroplast and mitochondrial genetic variation of larches at the Siberian tundra-taiga ecotone revealed by de novo assembly. Zimmermann HH; Harms L; Epp LS; Mewes N; Bernhardt N; Kruse S; Stoof-Leichsenring KR; Pestryakova LA; Wieczorek M; Trense D; Herzschuh U PLoS One; 2019; 14(7):e0216966. PubMed ID: 31291259 [TBL] [Abstract][Full Text] [Related]
4. Arctic shrub colonization lagged peak postglacial warmth: Molecular evidence in lake sediment from Arctic Canada. Crump SE; Miller GH; Power M; Sepúlveda J; Dildar N; Coghlan M; Bunce M Glob Chang Biol; 2019 Dec; 25(12):4244-4256. PubMed ID: 31603617 [TBL] [Abstract][Full Text] [Related]
5. Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest. Schulte L; Bernhardt N; Stoof-Leichsenring K; Zimmermann HH; Pestryakova LA; Epp LS; Herzschuh U Mol Ecol Resour; 2021 Apr; 21(3):801-815. PubMed ID: 33319428 [TBL] [Abstract][Full Text] [Related]
6. The History of Tree and Shrub Taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data. Zimmermann HH; Raschke E; Epp LS; Stoof-Leichsenring KR; Schirrmeister L; Schwamborn G; Herzschuh U Genes (Basel); 2017 Oct; 8(10):. PubMed ID: 29027988 [TBL] [Abstract][Full Text] [Related]
7. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Niemeyer B; Epp LS; Stoof-Leichsenring KR; Pestryakova LA; Herzschuh U Mol Ecol Resour; 2017 Nov; 17(6):e46-e62. PubMed ID: 28488798 [TBL] [Abstract][Full Text] [Related]
8. A 1 Ma sedimentary ancient DNA (sedaDNA) record of catchment vegetation changes and the developmental history of tropical Lake Towuti (Sulawesi, Indonesia). Ekram MA; Campbell M; Kose SH; Plet C; Hamilton R; Bijaksana S; Grice K; Russell J; Stevenson J; Vogel H; Coolen MJL Geobiology; 2024; 22(3):e12599. PubMed ID: 38745401 [TBL] [Abstract][Full Text] [Related]
9. Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs. Simin T; Davie-Martin CL; Petersen J; Høye TT; Rinnan R Sci Total Environ; 2022 Sep; 837():155783. PubMed ID: 35537508 [TBL] [Abstract][Full Text] [Related]
10. Plant diversity in sedimentary DNA obtained from high-latitude (Siberia) and high-elevation lakes (China). Stoof-Leichsenring KR; Liu S; Jia W; Li K; Pestryakova LA; Mischke S; Cao X; Liu X; Ni J; Neuhaus S; Herzschuh U Biodivers Data J; 2020; 8():e57089. PubMed ID: 33364896 [TBL] [Abstract][Full Text] [Related]
11. Characterization of chloroplast genomes of Alnus rubra and Betula cordifolia, and their use in phylogenetic analyses in Betulaceae. Lee SI; Nkongolo K; Park D; Choi IY; Choi AY; Kim NS Genes Genomics; 2019 Mar; 41(3):305-316. PubMed ID: 30456523 [TBL] [Abstract][Full Text] [Related]
12. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition. McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375 [TBL] [Abstract][Full Text] [Related]
13. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Leffler AJ; Klein ES; Oberbauer SF; Welker JM Oecologia; 2016 May; 181(1):287-97. PubMed ID: 26747269 [TBL] [Abstract][Full Text] [Related]
14. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Frost GV; Epstein HE Glob Chang Biol; 2014 Apr; 20(4):1264-77. PubMed ID: 24115456 [TBL] [Abstract][Full Text] [Related]
15. A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska. Tinner W; Bigler C; Gedye S; Gregory-Eaves I; Jones RT; Kaltenrieder P; Krähenbühl U; Hu FS Ecology; 2008 Mar; 89(3):729-43. PubMed ID: 18459336 [TBL] [Abstract][Full Text] [Related]
16. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century. Hollesen J; Buchwal A; Rachlewicz G; Hansen BU; Hansen MO; Stecher O; Elberling B Glob Chang Biol; 2015 Jun; 21(6):2410-23. PubMed ID: 25788025 [TBL] [Abstract][Full Text] [Related]
17. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range. Vowles T; Gunnarsson B; Molau U; Hickler T; Klemedtsson L; Björk RG J Ecol; 2017 Nov; 105(6):1547-1561. PubMed ID: 29200500 [TBL] [Abstract][Full Text] [Related]
18. Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana. Pop EW; Oberbauer SF; Starr G Oecologia; 2000 Aug; 124(2):176-184. PubMed ID: 28308177 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. Jørgensen T; Haile J; Möller P; Andreev A; Boessenkool S; Rasmussen M; Kienast F; Coissac E; Taberlet P; Brochmann C; Bigelow NH; Andersen K; Orlando L; Gilbert MT; Willerslev E Mol Ecol; 2012 Apr; 21(8):1989-2003. PubMed ID: 22590727 [TBL] [Abstract][Full Text] [Related]
20. Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient. Chen W; Tape KD; Euskirchen ES; Liang S; Matos A; Greenberg J; Fraterrigo JM Front Plant Sci; 2020; 11():588098. PubMed ID: 33362815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]