These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 33717687)
1. Putative carboxylesterase gene identification and their expression patterns in Ye J; Mang D; Kang K; Chen C; Zhang X; Tang Y; R Purba E; Song L; Zhang QH; Zhang L PeerJ; 2021; 9():e10919. PubMed ID: 33717687 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury). Zhang LW; Kang K; Jiang SC; Zhang YN; Wang TT; Zhang J; Sun L; Yang YQ; Huang CC; Jiang LY; Ding DG PLoS One; 2016; 11(10):e0164729. PubMed ID: 27741298 [TBL] [Abstract][Full Text] [Related]
3. Functional differentiation of two general-odorant binding proteins in Hyphantria cunea (Drury) (Lepidoptera: Erebidae). Zhang X; Purba ER; Sun J; Zhang QH; Dong SL; Zhang YN; He P; Mang D; Zhang L Pest Manag Sci; 2023 Sep; 79(9):3312-3325. PubMed ID: 37103977 [TBL] [Abstract][Full Text] [Related]
4. Identification of Candidate Carboxylesterases Associated With Odorant Degradation in Yi J; Wang S; Wang Z; Wang X; Li G; Zhang X; Pan Y; Zhao S; Zhang J; Zhou JJ; Wang J; Xi J Front Physiol; 2021; 12():674023. PubMed ID: 34566671 [TBL] [Abstract][Full Text] [Related]
5. Identification and Expression Patterns of Putative Diversified Carboxylesterases in the Tea Geometrid Sun L; Wang Q; Wang Q; Zhang Y; Tang M; Guo H; Fu J; Xiao Q; Zhang Y; Zhang Y Front Physiol; 2017; 8():1085. PubMed ID: 29326608 [TBL] [Abstract][Full Text] [Related]
6. Functional Disparity of Three Pheromone-Binding Proteins to Different Sex Pheromone Components in Zhang XQ; Mang DZ; Liao H; Ye J; Qian JL; Dong SL; Zhang YN; He P; Zhang QH; Purba ER; Zhang LW J Agric Food Chem; 2021 Jan; 69(1):55-66. PubMed ID: 33356240 [No Abstract] [Full Text] [Related]
7. Identification and expression patterns of candidate carboxylesterases in Li J; Zhang L Bull Entomol Res; 2022 Aug; 112(4):567-573. PubMed ID: 35670157 [No Abstract] [Full Text] [Related]
8. Botanical Volatiles Selection in Mediating Electrophysiological Responses and Reproductive Behaviors for the Fall Webworm Moth Bai PH; Wang HM; Liu BS; Li M; Liu BM; Gu XS; Tang R Front Physiol; 2020; 11():486. PubMed ID: 32547409 [TBL] [Abstract][Full Text] [Related]
9. Functional characterization of an antennal esterase from the noctuid moth, Spodoptera exigua. He P; Zhang J; Li ZQ; Zhang YN; Yang K; Dong SL; He P Arch Insect Biochem Physiol; 2014 Jun; 86(2):85-99. PubMed ID: 24753123 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea. Zhao Y; Wang F; Zhang X; Zhang S; Guo S; Zhu G; Liu Q; Li M PLoS One; 2016; 11(2):e0148159. PubMed ID: 26841106 [TBL] [Abstract][Full Text] [Related]
11. Antennal transcriptomic analysis of carboxylesterases and glutathione S-transferases associated with odorant degradation in the tea gray geometrid, Zhang F; Chen Y; Zhao X; Guo S; Hong F; Zhi Y; Zhang L; Zhou Z; Zhang Y; Zhou X; Li X Front Physiol; 2023; 14():1183610. PubMed ID: 37082242 [No Abstract] [Full Text] [Related]
12. Activation of the Host Immune Response in Wang Z; Feng K; Tang F; Xu M Insects; 2021 Oct; 12(11):. PubMed ID: 34821784 [TBL] [Abstract][Full Text] [Related]
13. Identification of Putative Carboxylesterase and Glutathione S-transferase Genes from the Antennae of the Chilo suppressalis (Lepidoptera: Pyralidae). Liu S; Gong ZJ; Rao XJ; Li MY; Li SG J Insect Sci; 2015; 15(1):. PubMed ID: 26198868 [TBL] [Abstract][Full Text] [Related]
14. Genomic analysis of two Chinese isolates of hyphantria cunea nucleopolyhedrovirus reveals a novel species of alphabaculovirus that infects hyphantria cunea drury (lepidoptera: arctiidae). Peng X; Zhang W; Lei C; Min S; Hu J; Wang Q; Sun X BMC Genomics; 2022 May; 23(1):367. PubMed ID: 35562654 [TBL] [Abstract][Full Text] [Related]
15. The transcriptomic response of Zhang L; Tang X; Wang Z; Tang F Front Cell Infect Microbiol; 2023; 13():1093432. PubMed ID: 36896191 [No Abstract] [Full Text] [Related]
16. Odorant degrading carboxylesterases modulate foraging and mating behaviors of Grapholita molesta. Wei H; Tan S; Li Z; Li J; Moural TW; Zhu F; Liu X Chemosphere; 2021 May; 270():128647. PubMed ID: 33757271 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis and response of three important detoxifying enzymes to Serratia marcescens Bizio (SM1) in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae). Feng K; Luo J; Ding X; Tang F Pestic Biochem Physiol; 2021 Oct; 178():104922. PubMed ID: 34446198 [TBL] [Abstract][Full Text] [Related]
18. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.). Tang R; Zhang F; Zhang ZN Insects; 2016 May; 7(2):. PubMed ID: 27153095 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization and functional analysis of a novel candidate of cuticle carboxylesterase in Spodoptera exigua degradating sex pheromones and plant volatile esters. He P; Mang DZ; Wang H; Wang MM; Ma YF; Wang J; Chen GL; Zhang F; He M Pestic Biochem Physiol; 2020 Feb; 163():227-234. PubMed ID: 31973861 [TBL] [Abstract][Full Text] [Related]
20. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV). Sun L; Yin J; Du H; Liu P; Cao C Pestic Biochem Physiol; 2020 Feb; 163():254-262. PubMed ID: 31973865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]