BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

634 related articles for article (PubMed ID: 33718055)

  • 21. A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images.
    Astaraki M; Yang G; Zakko Y; Toma-Dasu I; Smedby Ö; Wang C
    Front Oncol; 2021; 11():737368. PubMed ID: 34976794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiomics: the facts and the challenges of image analysis.
    Rizzo S; Botta F; Raimondi S; Origgi D; Fanciullo C; Morganti AG; Bellomi M
    Eur Radiol Exp; 2018 Nov; 2(1):36. PubMed ID: 30426318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
    Cascio D; Magro R; Fauci F; Iacomi M; Raso G
    Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AI-Based Detection, Classification and Prediction/Prognosis in Medical Imaging:: Towards Radiophenomics.
    Yousefirizi F; Pierre Decazes ; Amyar A; Ruan S; Saboury B; Rahmim A
    PET Clin; 2022 Jan; 17(1):183-212. PubMed ID: 34809866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.
    Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG
    J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening.
    Tu SJ; Wang CW; Pan KT; Wu YC; Wu CT
    Phys Med Biol; 2018 Mar; 63(6):065005. PubMed ID: 29446758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics.
    Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K
    Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs.
    Yoo H; Kim KH; Singh R; Digumarthy SR; Kalra MK
    JAMA Netw Open; 2020 Sep; 3(9):e2017135. PubMed ID: 32970157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT.
    Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A
    Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks.
    Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA
    Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications.
    Ather S; Kadir T; Gleeson F
    Clin Radiol; 2020 Jan; 75(1):13-19. PubMed ID: 31202567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification.
    Pota M; Scalco E; Sanguineti G; Farneti A; Cattaneo GM; Rizzo G; Esposito M
    Artif Intell Med; 2017 Sep; 81():41-53. PubMed ID: 28325604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiomics and deep learning in lung cancer.
    Avanzo M; Stancanello J; Pirrone G; Sartor G
    Strahlenther Onkol; 2020 Oct; 196(10):879-887. PubMed ID: 32367456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring Radiomics for Classification of Supraglottic Tumors: A Pilot Study in a Tertiary Care Center.
    Rao D; Koteshwara P; Singh R; Jagannatha V
    Indian J Otolaryngol Head Neck Surg; 2023 Jun; 75(2):433-439. PubMed ID: 37275092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians.
    Frix AN; Cousin F; Refaee T; Bottari F; Vaidyanathan A; Desir C; Vos W; Walsh S; Occhipinti M; Lovinfosse P; Leijenaar RTH; Hustinx R; Meunier P; Louis R; Lambin P; Guiot J
    J Pers Med; 2021 Jun; 11(7):. PubMed ID: 34202096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of pulmonary ground-glass opacity based on deep learning computer artificial intelligence.
    Ye W; Gu W; Guo X; Yi P; Meng Y; Han F; Yu L; Chen Y; Zhang G; Wang X
    Biomed Eng Online; 2019 Jan; 18(1):6. PubMed ID: 30670024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan.
    Xia X; Gong J; Hao W; Yang T; Lin Y; Wang S; Peng W
    Front Oncol; 2020; 10():418. PubMed ID: 32296645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Application of Radiomics in Classification and Prediction of Benign and Malignant Lung Tumors].
    Zhou T; Zhu C; Shi F
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Feb; 44(2):113-117. PubMed ID: 32400982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiomics: an overview in lung cancer management-a narrative review.
    Chen B; Yang L; Zhang R; Luo W; Li W
    Ann Transl Med; 2020 Sep; 8(18):1191. PubMed ID: 33241040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A primer on artificial intelligence in pancreatic imaging.
    Ahmed TM; Kawamoto S; Hruban RH; Fishman EK; Soyer P; Chu LC
    Diagn Interv Imaging; 2023 Sep; 104(9):435-447. PubMed ID: 36967355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.