BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33718716)

  • 21. A novel graphene oxide/trans-1,4-polyisoprene (GO/TPI) shape memory polymer nanocomposite and its multifunctional properties.
    Liu J; Wang Z; Li S; Sun X
    Nanotechnology; 2019 Jun; 30(25):255706. PubMed ID: 30780136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH).
    Rodriguez ED; Luo X; Mather PT
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):152-61. PubMed ID: 21250636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous inorganic-organic shape memory polymers.
    Zhang D; Burkes WL; Schoener CA; Grunlan MA
    Polymer (Guildf); 2012 Jun; 53(14):2935-2941. PubMed ID: 22956854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Poly(styrene-
    Wang B; Tu Z; Wu C; Hu T; Wang X; Long S; Gong X
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermo-Rheological and Shape Memory Properties of Block and Random Copolymers of Lactide and ε-Caprolactone.
    Naddeo M; Sorrentino A; Pappalardo D
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory.
    Garle A; Kong S; Ojha U; Budhlall BM
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):645-57. PubMed ID: 22252722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manufacturing and Properties of Binary Blend from Bacterial Polyester Poly(3-hydroxybutyrate-
    Ivorra-Martinez J; Verdu I; Fenollar O; Sanchez-Nacher L; Balart R; Quiles-Carrillo L
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32422915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties.
    Correa AC; Carmona VB; Simão JA; Capparelli Mattoso LH; Marconcini JM
    Carbohydr Polym; 2017 Jul; 167():177-184. PubMed ID: 28433152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. n-Hydroxyapatite/PCL-Pluronic-PCL Nanocomposites for Tissue Engineering. Part 2: Thermal and Tensile Study.
    Fu S; Guo G; Wang X; Zhou L; Gong C; Luo F; Zhao X; Wei Y; Qian Z
    J Biomater Sci Polym Ed; 2011; 22(1-3):239-51. PubMed ID: 20557698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of Shape Memory Polymer Foams Using Tungsten, Aluminum Oxide, and Silicon Dioxide Nanoparticles.
    Hasan SM; Thompson RS; Emery H; Nathan AL; Weems AC; Zhou F; Monroe MB; Maitland DJ
    RSC Adv; 2016; 6(2):918-927. PubMed ID: 27458520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths.
    Zhang D; Giese ML; Prukop SL; Grunlan MA
    J Polym Sci A Polym Chem; 2011 Feb; 49(3):754-761. PubMed ID: 22904597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microstructural Evolution of Poly(ε-Caprolactone), Its Immiscible Blend, and In Situ Generated Nanocomposites.
    Vozniak I; Hosseinnezhad R; Morawiec J; Galeski A
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33158123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Scalable Approach toward Shape Memory Polymer Composites via "Spring-Buckle" Microstructure Design.
    Wu X; Han Y; Zhou Z; Zhang X; Lu C
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13657-13665. PubMed ID: 28358194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering.
    Kai D; Prabhakaran MP; Chan BQ; Liow SS; Ramakrishna S; Xu F; Loh XJ
    Biomed Mater; 2016 Feb; 11(1):015007. PubMed ID: 26836757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fully Elastic Conductive Films from Viscoelastic Composites.
    Cho S; Song JH; Kong M; Shin S; Kim YT; Park G; Park CG; Shin TJ; Myoung J; Jeong U
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44096-44105. PubMed ID: 29181972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the Deformability and Recovery Moment of Shape Memory Polymer Composites for Bending Actuators: Multiple Neutral Axis Skins and Deployable Core.
    Kang D; Jeong JM; Jeong KI; Kim SS
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):33944-33956. PubMed ID: 37358080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of melt-recyclable poly(ε-caprolactone)-based supramolecular shape-memory nanocomposites.
    Pilate F; Wen ZB; Khelifa F; Hui Y; Delpierre S; Dan L; Mincheva R; Dubois P; Yang KK; Raquez JM
    RSC Adv; 2018 Jul; 8(48):27119-27130. PubMed ID: 35540004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.
    Zhao H; Zhao G
    J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the addition of diurethane dimethacrylate on the chemical and mechanical properties of tBA-PEGDMA acrylate based shape memory polymer network.
    Jerald Maria Antony G; Raja S; Aruna ST; Jarali CS
    J Mech Behav Biomed Mater; 2020 Oct; 110():103951. PubMed ID: 32957243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.