These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33719137)

  • 21. Magnetically driven omnidirectional artificial microswimmers.
    Vilfan M; Osterman N; Vilfan A
    Soft Matter; 2018 May; 14(17):3415-3422. PubMed ID: 29670984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Twisting and buckling: a new undulation mechanism for artificial swimmers.
    Oukhaled G; Cebers A; Bacri JC; Di Meglio JM; Py C
    Eur Phys J E Soft Matter; 2012 Nov; 35(11):121. PubMed ID: 23179010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronisation through learning for two self-propelled swimmers.
    Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P
    Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Janus magnetoelastic membrane swimmers.
    Xiong Y; Yuan H; Olvera de la Cruz M
    Soft Matter; 2023 Sep; 19(35):6721-6730. PubMed ID: 37622382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior.
    McNeill JM; Mallouk TE
    ACS Nanosci Au; 2023 Dec; 3(6):424-440. PubMed ID: 38144701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrophobicity Influence on Swimming Performance of Magnetically Driven Miniature Helical Swimmers.
    Ye C; Liu J; Wu X; Wang B; Zhang L; Zheng Y; Xu T
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30845732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmable Phototaxis of Metal-Phenolic Particle Microswimmers.
    Lin G; Richardson JJ; Ahmed H; Besford QA; Christofferson AJ; Beyer S; Lin Z; Rezk AR; Savioli M; Zhou J; McConville CF; Cortez-Jugo C; Yeo LY; Caruso F
    Adv Mater; 2021 Apr; 33(13):e2006177. PubMed ID: 33634513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Swim pressure on walls with curves and corners.
    Smallenburg F; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032304. PubMed ID: 26465470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confined swimming of bio-inspired microrobots in rectangular channels.
    Temel FZ; Yesilyurt S
    Bioinspir Biomim; 2015 Feb; 10(1):016015. PubMed ID: 25642947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime.
    Li YH; Chen SC
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bimetallic Microswimmers Speed Up in Confining Channels.
    Liu C; Zhou C; Wang W; Zhang HP
    Phys Rev Lett; 2016 Nov; 117(19):198001. PubMed ID: 27858454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal actuation of flagellar magnetic microswimmers.
    El Alaoui-Faris Y; Pomet JB; Régnier S; Giraldi L
    Phys Rev E; 2020 Apr; 101(4-1):042604. PubMed ID: 32422737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decoupling and Reprogramming the Wiggling Motion of Midge Larvae Using a Soft Robotic Platform.
    Xia N; Jin B; Jin D; Yang Z; Pan C; Wang Q; Ji F; Iacovacci V; Majidi C; Ding Y; Zhang L
    Adv Mater; 2022 Apr; 34(17):e2109126. PubMed ID: 35196405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motion and mixing for multiple ferromagnetic microswimmers.
    Gilbert AD; Ogrin FY; Petrov PG; Winlove CP
    Eur Phys J E Soft Matter; 2011 Nov; 34(11):121. PubMed ID: 22101507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple model of a planar undulating magnetic microswimmer.
    Gutman E; Or Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013012. PubMed ID: 25122374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.