These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33719339)

  • 1. Feature Selection for Breast Cancer Classification by Integrating Somatic Mutation and Gene Expression.
    Jiang Q; Jin M
    Front Genet; 2021; 12():629946. PubMed ID: 33719339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating mutation and gene expression cross-sectional data to infer cancer progression.
    Fleck JL; Pavel AB; Cassandras CG
    BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward the precision breast cancer survival prediction utilizing combined whole genome-wide expression and somatic mutation analysis.
    Zhang Y; Yang W; Li D; Yang JY; Guan R; Yang MQ
    BMC Med Genomics; 2018 Nov; 11(Suppl 5):104. PubMed ID: 30454048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of breast cancer patients using somatic mutation profiles and machine learning approaches.
    Vural S; Wang X; Guda C
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):62. PubMed ID: 27587275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating DNA Methylation, Gene Expression, Somatic Mutation, and Their Combinations in Inferring Tumor Tissue-of-Origin.
    Liu H; Qiu C; Wang B; Bing P; Tian G; Zhang X; Ma J; He B; Yang J
    Front Cell Dev Biol; 2021; 9():619330. PubMed ID: 34012960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating Somatic Mutations for Breast Cancer Survival Prediction Using Machine Learning Methods.
    He Z; Zhang J; Yuan X; Zhang Y
    Front Genet; 2020; 11():632901. PubMed ID: 33537063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A NOVEL AND EFFICIENT ALGORITHM FOR DE NOVO DISCOVERY OF MUTATED DRIVER PATHWAYS IN CANCER.
    Liu B; Wu C; Shen X; Pan W
    Ann Appl Stat; 2017 Sep; 11(3):1481-1512. PubMed ID: 29479394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TOOme: A Novel Computational Framework to Infer Cancer Tissue-of-Origin by Integrating Both Gene Mutation and Expression.
    He B; Lang J; Wang B; Liu X; Lu Q; He J; Gao W; Bing P; Tian G; Yang J
    Front Bioeng Biotechnol; 2020; 8():394. PubMed ID: 32509741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding co-mutated genes and candidate cancer genes in cancer genomes by stratified false discovery rate control.
    Wang J; Zhang Y; Shen X; Zhu J; Zhang L; Zou J; Guo Z
    Mol Biosyst; 2011 Apr; 7(4):1158-66. PubMed ID: 21279201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network.
    Xi J; Wang M; Li A
    BMC Bioinformatics; 2018 Jun; 19(1):214. PubMed ID: 29871594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust edge-based biomarker discovery improves prediction of breast cancer metastasis.
    Adnan N; Lei C; Ruan J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):359. PubMed ID: 32998692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of mutated driver pathways in cancer using a multi-objective optimization model.
    Zheng CH; Yang W; Chong YW; Xia JF
    Comput Biol Med; 2016 May; 72():22-9. PubMed ID: 26995027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Biomarker Identification Approach for Gastric Cancer Using Gene Expression and DNA Methylation Dataset.
    Zhang G; Xue Z; Yan C; Wang J; Luo H
    Front Genet; 2021; 12():644378. PubMed ID: 33868380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.