These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 33719412)
1. Enhancement of Memory Properties of Pentacene Field-Effect Transistor by the Reconstruction of an Inner Vertical Electric Field with an n-Type Semiconductor Interlayer. Wang Y; Kang L; Liu Z; Wan Z; Yin J; Gao X; Xia Y; Liu Z ACS Appl Mater Interfaces; 2021 Mar; 13(11):13452-13458. PubMed ID: 33719412 [TBL] [Abstract][Full Text] [Related]
2. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers. Li W; Guo F; Ling H; Zhang P; Yi M; Wang L; Wu D; Xie L; Huang W Adv Sci (Weinh); 2017 Aug; 4(8):1700007. PubMed ID: 28852619 [TBL] [Abstract][Full Text] [Related]
3. Deep-trap dominated degradation of the endurance characteristics in OFET memory with polymer charge-trapping layer. Yu T; Liu Z; Wang Y; Zhang L; Hou S; Wan Z; Yin J; Gao X; Wu L; Xia Y; Liu Z Sci Rep; 2023 Apr; 13(1):5865. PubMed ID: 37041232 [TBL] [Abstract][Full Text] [Related]
4. Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. Baek SW; Ha JW; Yoon M; Hwang DH; Lee J ACS Appl Mater Interfaces; 2018 Jun; 10(22):18948-18955. PubMed ID: 29756443 [TBL] [Abstract][Full Text] [Related]
5. Blending effect of 6,13-bis(triisopropylsilylethynyl) pentacene-graphene composite layers for flexible thin film transistors with a polymer gate dielectric. Basu S; Adriyanto F; Wang YH Nanotechnology; 2014 Feb; 25(8):085201. PubMed ID: 24492205 [TBL] [Abstract][Full Text] [Related]
6. Nonvolatile Transistor Memory with Self-Assembled Semiconducting Polymer Nanodomain Floating Gates. Wang W; Kim KL; Cho SM; Lee JH; Park C ACS Appl Mater Interfaces; 2016 Dec; 8(49):33863-33873. PubMed ID: 27960399 [TBL] [Abstract][Full Text] [Related]
7. Amorphous Strontium Titanate Film as Gate Dielectric for Higher Performance and Low Voltage Operation of Transparent and Flexible Organic Field Effect Transistor. Yadav S; Ghosh S ACS Appl Mater Interfaces; 2016 Apr; 8(16):10436-42. PubMed ID: 27029419 [TBL] [Abstract][Full Text] [Related]
8. Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors. DiBenedetto SA; Frattarelli DL; Facchetti A; Ratner MA; Marks TJ J Am Chem Soc; 2009 Aug; 131(31):11080-90. PubMed ID: 19606862 [TBL] [Abstract][Full Text] [Related]
9. Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics. Kim BJ; Ko Y; Cho JH; Cho J Small; 2013 Nov; 9(22):3784-91. PubMed ID: 23666682 [TBL] [Abstract][Full Text] [Related]
10. Achievement of High-Response Organic Field-Effect Transistor NO₂ Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction. Han S; Cheng J; Fan H; Yu J; Li L Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775653 [TBL] [Abstract][Full Text] [Related]
11. Laterally-stacked, solution-processed organic microcrystal with ambipolar charge transport behavior. Shim H; Kumar A; Cho H; Yang D; Palai AK; Pyo S ACS Appl Mater Interfaces; 2014 Oct; 6(20):17804-14. PubMed ID: 25244525 [TBL] [Abstract][Full Text] [Related]
12. Solution-processable low-voltage and flexible floating-gate memories based on an n-type polymer semiconductor and high-k polymer gate dielectrics. Li J; Yan F ACS Appl Mater Interfaces; 2014 Aug; 6(15):12815-20. PubMed ID: 25026221 [TBL] [Abstract][Full Text] [Related]
13. Intense-pulsed-UV-converted perhydropolysilazane gate dielectrics for organic field-effect transistors and logic gates. Back HS; Kim MJ; Baek JJ; Kim DH; Shin G; Choi KH; Cho JH RSC Adv; 2019 Jan; 9(6):3169-3175. PubMed ID: 35518960 [TBL] [Abstract][Full Text] [Related]
14. Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends. Park Y; Baeg KJ; Kim C ACS Appl Mater Interfaces; 2019 Feb; 11(8):8327-8336. PubMed ID: 30707007 [TBL] [Abstract][Full Text] [Related]
15. Improved Memory Properties of Graphene Oxide-Based Organic Memory Transistors. Al-Shawi A; Alias M; Sayers P; Mabrook MF Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31557870 [TBL] [Abstract][Full Text] [Related]
16. Surface-enhanced Raman spectroscopic studies of the Au-pentacene interface: a combined experimental and theoretical investigation. Adil D; Guha S J Chem Phys; 2013 Jul; 139(4):044715. PubMed ID: 23902011 [TBL] [Abstract][Full Text] [Related]
17. The Quinonoid Zwitterion Interlayer for the Improvement of Charge Carrier Mobility in Organic Field-Effect Transistors. Luczak A; Ruiz AT; Pascal S; Adamski A; Jung J; Luszczynska B; Siri O Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34068290 [TBL] [Abstract][Full Text] [Related]
18. Dependence of pentacene crystal growth on dielectric roughness for fabrication of flexible field-effect transistors. Yang H; Yang C; Kim SH; Jang M; Park CE ACS Appl Mater Interfaces; 2010 Feb; 2(2):391-6. PubMed ID: 20356184 [TBL] [Abstract][Full Text] [Related]
19. Effect of dielectric layers on device stability of pentacene-based field-effect transistors. Di CA; Yu G; Liu Y; Guo Y; Sun X; Zheng J; Wen Y; Wang Y; Wu W; Zhu D Phys Chem Chem Phys; 2009 Sep; 11(33):7268-73. PubMed ID: 19672538 [TBL] [Abstract][Full Text] [Related]
20. Using a single electrospun polymer nanofiber to enhance carrier mobility in organic field-effect transistors toward nonvolatile memory. Jian PZ; Chiu YC; Sun HS; Chen TY; Chen WC; Tung SH ACS Appl Mater Interfaces; 2014 Apr; 6(8):5506-15. PubMed ID: 24673527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]