These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 33719922)
1. 2,3-Butanediol production using soy-based nitrogen source and fermentation process evaluation by a novel isolate of Das A; Prakash G; Lali AM Prep Biochem Biotechnol; 2021; 51(10):1046-1055. PubMed ID: 33719922 [TBL] [Abstract][Full Text] [Related]
2. Isolation and Evaluation of Song CW; Rathnasingh C; Park JM; Lee J; Song H J Microbiol Biotechnol; 2018 Mar; 28(3):409-417. PubMed ID: 29212290 [TBL] [Abstract][Full Text] [Related]
3. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R,3R)-butanediol. Song CW; Chelladurai R; Park JM; Song H J Ind Microbiol Biotechnol; 2020 Jan; 47(1):97-108. PubMed ID: 31758412 [TBL] [Abstract][Full Text] [Related]
4. CRISPR-Cas9 mediated engineering of Bacillus licheniformis for industrial production of (2R,3S)-butanediol. Song CW; Rathnasingh C; Park JM; Kwon M; Song H Biotechnol Prog; 2021 Jan; 37(1):e3072. PubMed ID: 32964665 [TBL] [Abstract][Full Text] [Related]
5. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. Lee YG; Bae JM; Kim SJ J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291 [TBL] [Abstract][Full Text] [Related]
6. Efficient production of (R,R)-2,3-butanediol from cellulosic hydrolysate using Paenibacillus polymyxa ICGEB2008. Adlakha N; Yazdani SS J Ind Microbiol Biotechnol; 2015 Jan; 42(1):21-8. PubMed ID: 25424694 [TBL] [Abstract][Full Text] [Related]
7. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. Białkowska AM; Gromek E; Krysiak J; Sikora B; Kalinowska H; Jędrzejczak-Krzepkowska M; Kubik C; Lang S; Schütt F; Turkiewicz M J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1609-21. PubMed ID: 26445877 [TBL] [Abstract][Full Text] [Related]
8. Production of optically pure 2,3-butanediol from Miscanthus floridulus hydrolysate using engineered Bacillus licheniformis strains. Gao Y; Huang H; Chen S; Qi G World J Microbiol Biotechnol; 2018 Apr; 34(5):66. PubMed ID: 29687256 [TBL] [Abstract][Full Text] [Related]
9. Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Jurchescu IM; Hamann J; Zhou X; Ortmann T; Kuenz A; Prüße U; Lang S Appl Microbiol Biotechnol; 2013 Aug; 97(15):6715-23. PubMed ID: 23722266 [TBL] [Abstract][Full Text] [Related]
10. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Li L; Li K; Wang K; Chen C; Gao C; Ma C; Xu P Bioresour Technol; 2014 Oct; 170():256-261. PubMed ID: 25151068 [TBL] [Abstract][Full Text] [Related]
11. 2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis. Dias BDC; Lima MEDNV; Vollú RE; da Mota FF; da Silva AJR; de Castro AM; Freire DMG; Seldin L Appl Microbiol Biotechnol; 2018 Oct; 102(20):8773-8782. PubMed ID: 30121751 [TBL] [Abstract][Full Text] [Related]
12. Effects of pH and fermentation strategies on 2,3-butanediol production with an isolated Klebsiella sp. Zmd30 strain. Wong CL; Yen HW; Lin CL; Chang JS Bioresour Technol; 2014; 152():169-76. PubMed ID: 24291317 [TBL] [Abstract][Full Text] [Related]
13. Non-sterile fermentation of food waste using thermophilic and alkaliphilic Bacillus licheniformis YNP5-TSU for 2,3-butanediol production. OHair J; Jin Q; Yu D; Wu J; Wang H; Zhou S; Huang H Waste Manag; 2021 Feb; 120():248-256. PubMed ID: 33310601 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Wang Q; Chen T; Zhao X; Chamu J Biotechnol Bioeng; 2012 Jul; 109(7):1610-21. PubMed ID: 22231522 [TBL] [Abstract][Full Text] [Related]
15. Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4. Han SH; Lee JE; Park K; Park YC N Biotechnol; 2013 Jan; 30(2):166-72. PubMed ID: 22989924 [TBL] [Abstract][Full Text] [Related]
16. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Lee YG; Seo JH Biotechnol Biofuels; 2019; 12():204. PubMed ID: 31485270 [TBL] [Abstract][Full Text] [Related]
17. Production of 2,3-butanediol by Klebsiella oxytoca from various sugars in microalgal hydrolysate. Kim YJ; Joo HW; Park J; Kim DK; Jeong KJ; Chang YK Biotechnol Prog; 2015; 31(6):1669-75. PubMed ID: 26400837 [TBL] [Abstract][Full Text] [Related]
18. Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production. Heyman B; Lamm R; Tulke H; Regestein L; Büchs J Microb Cell Fact; 2019 May; 18(1):78. PubMed ID: 31053124 [TBL] [Abstract][Full Text] [Related]
19. Production of 2,3-butanediol by Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1 cultivated in acid and enzymatic hydrolysates of soybean hull. Cortivo PRD; Machado J; Hickert LR; Rossi DM; Ayub MAZ Biotechnol Prog; 2019 May; 35(3):e2793. PubMed ID: 30815989 [TBL] [Abstract][Full Text] [Related]
20. Effectively Converting Cane Molasses into 2,3-Butanediol Using Yang Y; Deng T; Cao W; Shen F; Liu S; Zhang J; Liang X; Wan Y Molecules; 2022 Jan; 27(3):. PubMed ID: 35164219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]