These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33720114)

  • 1. MS2-Affinity Purification Coupled with RNA Sequencing in Gram-Positive Bacteria.
    Mercier N; Prévost K; Massé E; Romby P; Caldelari I; Lalaouna D
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of New Bacterial Small RNA Targets Using MS2 Affinity Purification Coupled to RNA Sequencing.
    Carrier MC; Laliberté G; Massé E
    Methods Mol Biol; 2018; 1737():77-88. PubMed ID: 29484588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of unknown RNA partners using MAPS.
    Lalaouna D; Prévost K; Eyraud A; Massé E
    Methods; 2017 Mar; 117():28-34. PubMed ID: 27876680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Small RNA-Protein Partners in Plant Symbiotic Bacteria.
    Robledo M; Matia-González AM; García-Tomsig NI; Jiménez-Zurdo JI
    Methods Mol Biol; 2018; 1737():351-370. PubMed ID: 29484603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vivo reporter assay for sRNA-directed gene control in Gram-positive bacteria: identifying a novel sRNA target in Staphylococcus aureus.
    Ivain L; Bordeau V; Eyraud A; Hallier M; Dreano S; Tattevin P; Felden B; Chabelskaya S
    Nucleic Acids Res; 2017 May; 45(8):4994-5007. PubMed ID: 28369640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of aptamer tagging to identify in vivo protein binding partners of small regulatory RNAs.
    Corcoran CP; Rieder R; Podkaminski D; Hofmann B; Vogel J
    Methods Mol Biol; 2012; 905():177-200. PubMed ID: 22736004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A game of tag: MAPS catches up on RNA interactomes.
    Carrier MC; Lalaouna D; Massé E
    RNA Biol; 2016 May; 13(5):473-6. PubMed ID: 26967018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MS2-Affinity Purification Coupled With RNA Sequencing Approach in the Human Pathogen Staphylococcus aureus.
    Lalaouna D; Desgranges E; Caldelari I; Marzi S
    Methods Enzymol; 2018; 612():393-411. PubMed ID: 30502950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of sRNA interacting with a transcript of interest using MS2-affinity purification coupled with RNA sequencing (MAPS) technology.
    Lalaouna D; Massé E
    Genom Data; 2015 Sep; 5():136-8. PubMed ID: 26484242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms.
    Tomasini A; Moreau K; Chicher J; Geissmann T; Vandenesch F; Romby P; Marzi S; Caldelari I
    Nucleic Acids Res; 2017 Jun; 45(11):6746-6760. PubMed ID: 28379505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Integrated Affinity Chromatography-Based Approach to Unravel the sRNA Interactome in Nitrogen-Fixing Rhizobia.
    García-Tomsig NI; Lagares A; Becker A; Valverde C; Jiménez-Zurdo JI
    Methods Mol Biol; 2024; 2741():363-380. PubMed ID: 38217663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo expression and purification of aptamer-tagged small RNA regulators.
    Said N; Rieder R; Hurwitz R; Deckert J; Urlaub H; Vogel J
    Nucleic Acids Res; 2009 Nov; 37(20):e133. PubMed ID: 19726584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reading between the Lines: Utilizing RNA-Seq Data for Global Analysis of sRNAs in Staphylococcus aureus.
    Sorensen HM; Keogh RA; Wittekind MA; Caillet AR; Wiemels RE; Laner EA; Carroll RK
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32727859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs.
    Georg J; Lalaouna D; Hou S; Lott SC; Caldelari I; Marzi S; Hess WR; Romby P
    Mol Microbiol; 2020 Mar; 113(3):603-612. PubMed ID: 31705780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Prowl: An In Vivo Method to Identify RNA Partners of a sRNA.
    Carrier MC; Morin C; Massé E
    Methods Enzymol; 2018; 612():251-268. PubMed ID: 30502945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small regulatory RNAs from low-GC Gram-positive bacteria.
    Brantl S; Brückner R
    RNA Biol; 2014; 11(5):443-56. PubMed ID: 24576839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct mechanisms in Escherichia coli.
    Lalaouna D; Morissette A; Carrier MC; Massé E
    Mol Microbiol; 2015 Oct; 98(2):357-69. PubMed ID: 26175201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium tuberculosis 6C sRNA binds multiple mRNA targets via C-rich loops independent of RNA chaperones.
    Mai J; Rao C; Watt J; Sun X; Lin C; Zhang L; Liu J
    Nucleic Acids Res; 2019 May; 47(8):4292-4307. PubMed ID: 30820540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.