These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33720157)

  • 1. Rayleigh speckle-based wavemeter with high dynamic range and fast reference speckle establishment process assisted by optical frequency combs.
    Wan Y; Fan X; Wang S; Zhang Z; Xu B; He Z
    Opt Lett; 2021 Mar; 46(6):1241-1244. PubMed ID: 33720157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution wavemeter using Rayleigh speckle obtained by optical time domain reflectometry.
    Wan Y; Wang S; Fan X; Zhang Z; He Z
    Opt Lett; 2020 Feb; 45(4):799-802. PubMed ID: 32058473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speckle-displacement-based wavemeter for mode-hop and side-mode detection.
    Jamal MT; Jakobsen ML; Hanson SG; Hansen AK; Jensen OB
    Appl Opt; 2022 Feb; 61(4):989-994. PubMed ID: 35201073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckle wavemeter based on a multi-core fiber and compressive imaging.
    Liu H; Kong H; He J; Qiu Y; Mao B; Meng Y; Li Y; Kang J; Wang L; Li Y
    Appl Opt; 2024 Jan; 63(3):846-852. PubMed ID: 38294400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution.
    Bruce GD; O'Donnell L; Chen M; Dholakia K
    Opt Lett; 2019 Mar; 44(6):1367-1370. PubMed ID: 30874652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared speckle wavemeter based on nonlinear frequency conversion.
    Sun Y; Ni F; Huang Y; Liu H; Chen X
    Opt Lett; 2023 Aug; 48(15):4049-4052. PubMed ID: 37527115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of optical frequency combs in a fiber-ring/microresonator laser system.
    Guo C; Che K; Xu H; Zhang P; Tang D; Ren C; Luo Z; Cai Z
    Opt Lett; 2016 Jun; 41(11):2576-9. PubMed ID: 27244418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed RF spectral analysis using a Rayleigh backscattering speckle spectrometer.
    Murray MJ; Murray JB; Schermer RT; McKinney JD; Redding B
    Opt Express; 2023 Jun; 31(13):20651-20664. PubMed ID: 37381184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter.
    Bruce GD; O'Donnell L; Chen M; Facchin M; Dholakia K
    Opt Lett; 2020 Apr; 45(7):1926-1929. PubMed ID: 32236034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization.
    Metzger NK; Spesyvtsev R; Bruce GD; Miller B; Maker GT; Malcolm G; Mazilu M; Dholakia K
    Nat Commun; 2017 Jun; 8():15610. PubMed ID: 28580938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact high-resolution FBG strain interrogator based on laser-written 3D scattering structure in flat optical fiber.
    Falak P; Lee T; Zahertar S; Shi B; Moog B; Brambilla G; Holmes C; Beresna M
    Sci Rep; 2023 May; 13(1):8805. PubMed ID: 37258696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning.
    Cai R; Xiao Y; Sui X; Li Y; Wu Z; Wu J; Deng G; Zhou H; Zhou S
    Opt Lett; 2023 Aug; 48(15):3961-3964. PubMed ID: 37527093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell NaErF
    Wang T; Li Y; Yan L; Liang Q; Wang X; Tao J; Yang J; Qiu Y; Meng Y; Mao B; Zhao S; Zhou P; Zhou B
    Nanoscale; 2021 Oct; 13(38):16207-16215. PubMed ID: 34545901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulative study on speckle-spectral properties of a random pixelated grating.
    Wu L; Cai Z; Su Y; Wu J
    J Opt Soc Am A Opt Image Sci Vis; 2019 Aug; 36(8):1410-1417. PubMed ID: 31503568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Machine Learning Specklegram Wavemeter (MaSWave) Based on a Short Section of Multimode Fiber as the Dispersive Element.
    Inalegwu OC; Ii REG; Huang J
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-high resolution and broadband chip-scale speckle enhanced Fourier-transform spectrometer.
    Paudel U; Rose T
    Opt Express; 2020 May; 28(11):16469-16485. PubMed ID: 32549469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.
    Li H; Wu J; Miao A; Yu P; Chen J; Zhang Y
    Biomed Eng Online; 2017 Apr; 16(1):46. PubMed ID: 28412952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle-based strain sensing in multimode fiber.
    Murray MJ; Davis A; Kirkendall C; Redding B
    Opt Express; 2019 Sep; 27(20):28494-28506. PubMed ID: 31684600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-fiber spectrometer based on speckle pattern reconstruction.
    Redding B; Popoff SM; Cao H
    Opt Express; 2013 Mar; 21(5):6584-600. PubMed ID: 23482230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser wavelength measurement with a Fourier transform wavemeter.
    Junttila ML; Stahlberg B
    Appl Opt; 1990 Aug; 29(24):3510-6. PubMed ID: 20567445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.