These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33720184)

  • 21. Water metamaterial for ultra-broadband and wide-angle absorption.
    Xie J; Zhu W; Rukhlenko ID; Xiao F; He C; Geng J; Liang X; Jin R; Premaratne M
    Opt Express; 2018 Feb; 26(4):5052-5059. PubMed ID: 29475347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wideband Metamaterial Absorbers Based on Conductive Plastic with Additive Manufacturing Technology.
    Lu Y; Chi B; Liu D; Gao S; Gao P; Huang Y; Yang J; Yin Z; Deng G
    ACS Omega; 2018 Sep; 3(9):11144-11150. PubMed ID: 31459223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency-reconfigurable metamaterial absorber/reflector with eight operating modes.
    Yang R; Xu J; Wang J; Ma R; Zhang W
    Opt Express; 2019 Jun; 27(12):16550-16559. PubMed ID: 31252879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-Wideband Flexible Absorber in Microwave Frequency Band.
    Fan S; Song Y
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrawide Bandwidth Electromagnetic Wave Absorbers Using a High-capacitive Folded Spiral Frequency Selective Surface in a Multilayer Structure.
    Liu T; Kim SS
    Sci Rep; 2019 Nov; 9(1):16494. PubMed ID: 31712676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite.
    Huang Y; Yuan X; Wang C; Chen M; Tang L; Fang D
    Opt Lett; 2018 Jun; 43(12):2764-2767. PubMed ID: 29905683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces.
    Huang J; Li J; Yang Y; Li J; Li J; Zhang Y; Yao J
    Opt Express; 2020 Jun; 28(12):17832-17840. PubMed ID: 32679986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable ultra-flat optical-comb-enabled, reconfigurable, and efficient coherent channelized receiver.
    Huang H; Wang R; Zhang C; Chen Y; Yang H; Qiu K
    Opt Lett; 2020 Feb; 45(4):848-851. PubMed ID: 32058486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.
    Qiu X; Wang L; Zhu H; Guan Y; Zhang Q
    Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas.
    Huang Y; Luo J; Pu M; Guo Y; Zhao Z; Ma X; Li X; Luo X
    Adv Sci (Weinh); 2019 Apr; 6(7):1801691. PubMed ID: 30989022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-layer structure microwave absorbers based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zn0.5Fe2O4 porous microfibers.
    Liu H; Meng X; Yang X; Jing M; Shen X; Dong M
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2878-84. PubMed ID: 24734704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion.
    Zhang J; Wu X; Liu L; Huang C; Chen X; Tian Z; Ouyang C; Gu J; Zhang X; He M; Han J; Luo X; Zhang W
    Opt Express; 2019 Sep; 27(18):25595-25602. PubMed ID: 31510429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe
    Liu Y; Chen Z; Zhang Y; Feng R; Chen X; Xiong C; Dong L
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13860-13868. PubMed ID: 29589899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consecutively Strong Absorption from Gigahertz to Terahertz Bands of a Monolithic Three-Dimensional Fe
    Chen H; Huang Z; Huang Y; Zhang Y; Ge Z; Ma W; Zhang T; Wu M; Xu S; Fan F; Chang S; Chen Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1274-1282. PubMed ID: 30511569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wideband and polarization-insensitive metamaterial absorber with loading lumped resistors.
    Xiong H; Bin Long T; Shi T; Xuan Jiang B; Tao Zhang J
    Appl Opt; 2020 Aug; 59(23):7092-7098. PubMed ID: 32788804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Co-Polarization Broadband Radar Absorber for RCS Reduction.
    Beeharry T; Yahiaoui R; Selemani K; Ouslimani HH
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205609
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing.
    Nauroze SA; Novelino LS; Tentzeris MM; Paulino GH
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13210-13215. PubMed ID: 30545917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching.
    Mou J; Shen Z
    Sci Rep; 2017 Jul; 7(1):6922. PubMed ID: 28761154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.