These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33720217)

  • 1. Label-free plasmonic assisted optical trapping of single DNA molecules.
    Chen L; Liu W; Shen D; Zhou Z; Liu Y; Wan W
    Opt Lett; 2021 Mar; 46(6):1482-1485. PubMed ID: 33720217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-optical tunable plasmonic nano-aggregations for surface-enhanced Raman scattering.
    Chen L; Liu W; Shen D; Liu Y; Zhou Z; Liang X; Wan W
    Nanoscale; 2019 Jul; 11(28):13558-13566. PubMed ID: 31290520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Manipulation of DNA using a Combination of Optical and Thermophoretic Forces: Separation of Different-Sized DNA from Mixture Solution.
    Shoji T; Itoh K; Saitoh J; Kitamura N; Yoshii T; Murakoshi K; Yamada Y; Yokoyama T; Ishihara H; Tsuboi Y
    Sci Rep; 2020 Feb; 10(1):3349. PubMed ID: 32098985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic tweezers for optical manipulation and biomedical applications.
    Tan H; Hu H; Huang L; Qian K
    Analyst; 2020 Aug; 145(17):5699-5712. PubMed ID: 32692343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping.
    Huang JA; Mousavi MZ; Zhao Y; Hubarevich A; Omeis F; Giovannini G; Schütte M; Garoli D; De Angelis F
    Nat Commun; 2019 Nov; 10(1):5321. PubMed ID: 31757965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity.
    Chen C; Juan ML; Li Y; Maes G; Borghs G; Van Dorpe P; Quidant R
    Nano Lett; 2012 Jan; 12(1):125-32. PubMed ID: 22136462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Tweezers Raman Microspectroscopy of Single Cells and Biological Particles.
    Navas-Moreno M; Chan JW
    Methods Mol Biol; 2018; 1745():219-257. PubMed ID: 29476472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon enhanced optical tweezers with gold-coated black silicon.
    Kotsifaki DG; Kandyla M; Lagoudakis PG
    Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light.
    Shoji T; Saitoh J; Kitamura N; Nagasawa F; Murakoshi K; Yamauchi H; Ito S; Miyasaka H; Ishihara H; Tsuboi Y
    J Am Chem Soc; 2013 May; 135(17):6643-8. PubMed ID: 23586869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap.
    Killian JL; Inman JT; Wang MD
    ACS Nano; 2018 Dec; 12(12):11963-11974. PubMed ID: 30457331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoenhanced Raman Spectroscopy via Plasmonic Trapping for Molecular Sensing.
    Hong S; Shim O; Kwon H; Choi Y
    Anal Chem; 2016 Aug; 88(15):7633-8. PubMed ID: 27396542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.
    Miao X; Wilson BK; Pun SH; Lin LY
    Opt Express; 2008 Sep; 16(18):13517-25. PubMed ID: 18772960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Trapping and Release of Nanoparticles in a Monitoring Environment.
    Kim JD; Lee YG
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells.
    Mondal PP; Baro N; Singh A; Joshi P; Basumatary J
    Sci Rep; 2022 Jun; 12(1):10229. PubMed ID: 35715431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.