These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33720217)

  • 21. Ultrastrong optical binding of metallic nanoparticles.
    Demergis V; Florin EL
    Nano Lett; 2012 Nov; 12(11):5756-60. PubMed ID: 23035835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broadband SERS Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing.
    Tanwar S; Kaur V; Kaur G; Sen T
    J Phys Chem Lett; 2021 Aug; 12(33):8141-8150. PubMed ID: 34410129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays.
    Kim JM; Kim J; Choi K; Nam JM
    Adv Mater; 2023 Apr; 35(15):e2208250. PubMed ID: 36680474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using the near field optical trapping effect of a dielectric metasurface to improve SERS enhancement for virus detection.
    Kenworthy CF; Pjotr Stoevelaar L; Alexander AJ; Gerini G
    Sci Rep; 2021 Mar; 11(1):6873. PubMed ID: 33767266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raman tweezers and their application to the study of singly trapped eukaryotic cells.
    Snook RD; Harvey TJ; Correia Faria E; Gardner P
    Integr Biol (Camb); 2009 Jan; 1(1):43-52. PubMed ID: 20023790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap.
    Ni W; Ba H; Lutich AA; Jäckel F; Feldmann J
    Nano Lett; 2012 Sep; 12(9):4647-50. PubMed ID: 22924589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro colocalization of plasmonic nano-biolabels and biomolecules using plasmonic and Raman scattering microspectroscopy.
    Chaudhari K; Pradeep T
    J Biomed Opt; 2015 Apr; 20(4):046011. PubMed ID: 25901655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity.
    Chen C; Juan ML; Li Y; Maes G; Borghs G; Van Dorpe P; Quidant R
    Nano Lett; 2012 Jan; 12(1):125-32. PubMed ID: 22136462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles.
    Ertsgaard CT; Wittenberg NJ; Klemme DJ; Barik A; Shih WC; Oh SH
    Nano Lett; 2018 Sep; 18(9):5946-5953. PubMed ID: 30071732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film.
    Pang Y; Gordon R
    Nano Lett; 2011 Sep; 11(9):3763-7. PubMed ID: 21838243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells.
    Maier CM; Huergo MA; Milosevic S; Pernpeintner C; Li M; Singh DP; Walker D; Fischer P; Feldmann J; Lohmüller T
    Nano Lett; 2018 Dec; 18(12):7935-7941. PubMed ID: 30468387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas.
    Zhang W; Huang L; Santschi C; Martin OJ
    Nano Lett; 2010 Mar; 10(3):1006-11. PubMed ID: 20151698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging.
    Nagy-Simon T; Potara M; Craciun AM; Licarete E; Astilean S
    J Colloid Interface Sci; 2018 May; 517():239-250. PubMed ID: 29428811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable and amplified Raman gold nanoprobes for effective tracking (TARGET): in vivo sensing and imaging.
    Gandra N; Hendargo HC; Norton SJ; Fales AM; Palmer GM; Vo-Dinh T
    Nanoscale; 2016 Apr; 8(16):8486-94. PubMed ID: 27064259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Universal Method for Label-Free Detection of Pathogens and Biomolecules by Surface-Enhanced Raman Spectroscopy Based on Gold Nanoparticles.
    Liu L; Zhang T; Wu Z; Zhang F; Wang Y; Wang X; Zhang Z; Li C; Lv X; Chen D; Jiao S; Wu J; Li Y
    Anal Chem; 2023 Feb; 95(8):4050-4058. PubMed ID: 36780544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmable DNA Tweezer-Actuated SERS Probe for the Sensitive Detection of AFB
    Li J; Wang W; Zhang H; Lu Z; Wu W; Shu M; Han H
    Anal Chem; 2020 Apr; 92(7):4900-4907. PubMed ID: 32148015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters.
    Kneipp K; Kneipp H
    Faraday Discuss; 2006; 132():27-33; discussion 85-94. PubMed ID: 16833105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.