These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33720217)
41. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. Kanehira Y; Tapio K; Wegner G; Kogikoski S; Rüstig S; Prietzel C; Busch K; Bald I ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540 [TBL] [Abstract][Full Text] [Related]
42. Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity. Santiago-Cordoba MA; Cetinkaya M; Boriskina SV; Vollmer F; Demirel MC J Biophotonics; 2012 Aug; 5(8-9):629-38. PubMed ID: 22707455 [TBL] [Abstract][Full Text] [Related]
43. 'Squeezed' interparticle properties for plasmonic coupling and SERS characteristics of duplex DNA conjugated/linked gold nanoparticles of homo/hetero-sizes. Skeete Z; Cheng HW; Ngo QM; Salazar C; Sun W; Luo J; Zhong CJ Nanotechnology; 2016 Aug; 27(32):325706. PubMed ID: 27352636 [TBL] [Abstract][Full Text] [Related]
44. Direct observation of single DNA structural alterations at low forces with surface-enhanced Raman scattering. Rao S; Raj S; Cossins B; Marro M; Guallar V; Petrov D Biophys J; 2013 Jan; 104(1):156-62. PubMed ID: 23332068 [TBL] [Abstract][Full Text] [Related]
45. Instrument-Free Synthesizable Fabrication of Label-Free Optical Biosensing Paper Strips for the Early Detection of Infectious Keratoconjunctivitides. Kim W; Lee JC; Shin JH; Jin KH; Park HK; Choi S Anal Chem; 2016 May; 88(10):5531-7. PubMed ID: 27127842 [TBL] [Abstract][Full Text] [Related]
46. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Hang Y; Wang A; Wu N Chem Soc Rev; 2024 Mar; 53(6):2932-2971. PubMed ID: 38380656 [TBL] [Abstract][Full Text] [Related]
47. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Khlebtsov NG; Lin L; Khlebtsov BN; Ye J Theranostics; 2020; 10(5):2067-2094. PubMed ID: 32089735 [TBL] [Abstract][Full Text] [Related]
48. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers. Wu MY; Ling DX; Ling L; Li W; Li YQ Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526 [TBL] [Abstract][Full Text] [Related]
49. Quantitative label-free and real-time surface-enhanced Raman scattering monitoring of reaction kinetics using self-assembled bifunctional nanoparticle arrays. Zhang K; Zhao J; Ji J; Li Y; Liu B Anal Chem; 2015 Sep; 87(17):8702-8. PubMed ID: 26267841 [TBL] [Abstract][Full Text] [Related]
50. Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures. Shen J; Xu L; Wang C; Pei H; Tai R; Song S; Huang Q; Fan C; Chen G Angew Chem Int Ed Engl; 2014 Aug; 53(32):8338-42. PubMed ID: 24954711 [TBL] [Abstract][Full Text] [Related]
52. Ultra sensitive label free surface enhanced Raman spectroscopy method for the detection of biomolecules. Hughes J; Izake EL; Lott WB; Ayoko GA; Sillence M Talanta; 2014 Dec; 130():20-5. PubMed ID: 25159374 [TBL] [Abstract][Full Text] [Related]
53. A ring-shaped protein clusters gold nanoparticles acting as molecular scaffold for plasmonic surfaces. Ardini M; Huang JA; Caprettini V; De Angelis F; Fata F; Silvestri I; Cimini A; Giansanti F; Angelucci F; Ippoliti R Biochim Biophys Acta Gen Subj; 2020 Aug; 1864(8):129617. PubMed ID: 32304715 [TBL] [Abstract][Full Text] [Related]
54. High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap. Killian JL; Inman JT; Wang MD ACS Nano; 2018 Dec; 12(12):11963-11974. PubMed ID: 30457331 [TBL] [Abstract][Full Text] [Related]
55. Plasmonic optical trap having very large active volume realized with nano-ring structure. Kang Z; Zhang H; Lu H; Xu J; Ong HC; Shum P; Ho HP Opt Lett; 2012 May; 37(10):1748-50. PubMed ID: 22627558 [TBL] [Abstract][Full Text] [Related]
56. Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. Fang W; Jia S; Chao J; Wang L; Duan X; Liu H; Li Q; Zuo X; Wang L; Wang L; Liu N; Fan C Sci Adv; 2019 Sep; 5(9):eaau4506. PubMed ID: 31598548 [TBL] [Abstract][Full Text] [Related]
58. Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms. Zhang H; Wang R; Sikdar D; Wu L; Sun J; Gu N; Chen Y ACS Sens; 2022 Feb; 7(2):622-631. PubMed ID: 35157439 [TBL] [Abstract][Full Text] [Related]
59. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes. Zhang K; Ji J; Li Y; Liu B Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488 [TBL] [Abstract][Full Text] [Related]
60. Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy. Liu R; Taylor DS; Matthews DL; Chan JW Appl Spectrosc; 2010 Nov; 64(11):1308-10. PubMed ID: 21073802 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]