These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 33720310)
1. Transcriptome differences between Cupriavidus necator NH9 grown with 3-chlorobenzoate and that grown with benzoate. Moriuchi R; Dohra H; Kanesaki Y; Ogawa N Biosci Biotechnol Biochem; 2021 May; 85(6):1546-1561. PubMed ID: 33720310 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. Ogawa N; McFall SM; Klem TJ; Miyashita K; Chakrabarty AM J Bacteriol; 1999 Nov; 181(21):6697-705. PubMed ID: 10542171 [TBL] [Abstract][Full Text] [Related]
3. 3-Chlorobenzoate is taken up by a chromosomally encoded transport system in Cupriavidus necator JMP134. Ledger T; Aceituno F; González B Microbiology (Reading); 2009 Aug; 155(Pt 8):2757-2765. PubMed ID: 19423632 [TBL] [Abstract][Full Text] [Related]
4. The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Ogawa N; Miyashita K Appl Environ Microbiol; 1999 Feb; 65(2):724-31. PubMed ID: 9925607 [TBL] [Abstract][Full Text] [Related]
5. Complete Genome Sequence of 3-Chlorobenzoate-Degrading Bacterium Moriuchi R; Dohra H; Kanesaki Y; Ogawa N Front Microbiol; 2019; 10():133. PubMed ID: 30809202 [No Abstract] [Full Text] [Related]
6. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134. Ledger T; Pieper DH; Pérez-Pantoja D; González B Microbiology (Reading); 2002 Nov; 148(Pt 11):3431-3440. PubMed ID: 12427935 [TBL] [Abstract][Full Text] [Related]
7. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. Francisco P; Ogawa N; Suzuki K; Miyashita K Microbiology (Reading); 2001 Jan; 147(Pt 1):121-33. PubMed ID: 11160806 [TBL] [Abstract][Full Text] [Related]
8. TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. Laemmli CM; Schönenberger R; Suter M; Zehnder AJ; van der Meer JR Arch Microbiol; 2002 Jul; 178(1):13-25. PubMed ID: 12070765 [TBL] [Abstract][Full Text] [Related]
9. Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Harwood CS; Parales RE; Dispensa M Appl Environ Microbiol; 1990 May; 56(5):1501-3. PubMed ID: 2339899 [TBL] [Abstract][Full Text] [Related]
10. Strict and direct transcriptional repression of the pobA gene by benzoate avoids 4-hydroxybenzoate degradation in the pollutant degrader bacterium Cupriavidus necator JMP134. Donoso RA; Pérez-Pantoja D; González B Environ Microbiol; 2011 Jun; 13(6):1590-600. PubMed ID: 21450007 [TBL] [Abstract][Full Text] [Related]
11. Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. Pérez-Pantoja D; Ledger T; Pieper DH; González B J Bacteriol; 2003 Mar; 185(5):1534-42. PubMed ID: 12591870 [TBL] [Abstract][Full Text] [Related]
12. Amino acid residues critical for DNA binding and inducer recognition in CbnR, a LysR-type transcriptional regulator from Cupriavidus necator NH9. Moriuchi R; Takada K; Takabayashi M; Yamamoto Y; Shimodaira J; Kuroda N; Akiyama E; Udagawa M; Minai R; Fukuda M; Senda T; Ogawa N Biosci Biotechnol Biochem; 2017 Nov; 81(11):2119-2129. PubMed ID: 28936918 [TBL] [Abstract][Full Text] [Related]
13. Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134. Pérez-Pantoja D; Donoso RA; Sánchez MA; González B Microbiology (Reading); 2009 Nov; 155(Pt 11):3641-3651. PubMed ID: 19684066 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of 3-chlorobenzoate by a Pseudomonas (diff) spp. Vora KA; Modi VV Indian J Exp Biol; 1989 Nov; 27(11):967-71. PubMed ID: 2620936 [TBL] [Abstract][Full Text] [Related]
15. The copy number of the catabolic plasmid pJP4 affects growth of Ralstonia eutropha JMP134 (pJP4) on 3-chlorobenzoate. Trefault N; Clément P; Manzano M; Pieper DH; González B FEMS Microbiol Lett; 2002 Jun; 212(1):95-100. PubMed ID: 12076793 [TBL] [Abstract][Full Text] [Related]
16. Growth of the genetically engineered strain Cupriavidus necator RW112 with chlorobenzoates and technical chlorobiphenyls. Wittich RM; Wolff P Microbiology (Reading); 2007 Jan; 153(Pt 1):186-95. PubMed ID: 17185547 [TBL] [Abstract][Full Text] [Related]
17. Specificity of Emelyanova EV; Solyanikova IP Front Biosci (Elite Ed); 2022 Jun; 14(2):15. PubMed ID: 35730456 [TBL] [Abstract][Full Text] [Related]
18. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Hickey WJ; Focht DD Appl Environ Microbiol; 1990 Dec; 56(12):3842-50. PubMed ID: 2128010 [TBL] [Abstract][Full Text] [Related]
19. Involvement of several transcriptional regulators in the differential expression of tfd genes in Cupriavidus necator JMP134. Trefault N; Guzmán L; Pérez H; Godoy M; González B Int Microbiol; 2009 Jun; 12(2):97-106. PubMed ID: 19784929 [TBL] [Abstract][Full Text] [Related]
20. Role of tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II) gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Pérez-Pantoja D; Guzmán L; Manzano M; Pieper DH; González B Appl Environ Microbiol; 2000 Apr; 66(4):1602-8. PubMed ID: 10742248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]