These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33720414)

  • 1. Modeling dynamic correlation in zero-inflated bivariate count data with applications to single-cell RNA sequencing data.
    Yang Z; Ho YY
    Biometrics; 2022 Jun; 78(2):766-776. PubMed ID: 33720414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bivariate zero-inflated negative binomial model and its applications to biomedical settings.
    Cho H; Liu C; Preisser JS; Wu D
    Stat Methods Med Res; 2023 Jul; 32(7):1300-1317. PubMed ID: 37167422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications.
    Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L
    Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics.
    Choi K; Chen Y; Skelly DA; Churchill GA
    Genome Biol; 2020 Jul; 21(1):183. PubMed ID: 32718323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical methods for analysis of single-cell RNA-sequencing data.
    Das S; Rai SN
    MethodsX; 2021; 8():101580. PubMed ID: 35004214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive assessment of hurdle and zero-inflated models for single cell RNA-sequencing analysis.
    Cui T; Wang T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data.
    Dadaneh SZ; de Figueiredo P; Sze SH; Zhou M; Qian X
    BMC Genomics; 2020 Sep; 21(Suppl 9):585. PubMed ID: 32900358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial.
    Lee KH; Pedroza C; Avritscher EBC; Mosquera RA; Tyson JE
    Trials; 2023 Sep; 24(1):613. PubMed ID: 37752579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-ziptf: stable tensor factorization for zero-inflated multi-dimensional genomics data.
    Chafamo D; Shanmugam V; Tokcan N
    BMC Bioinformatics; 2024 Oct; 25(1):323. PubMed ID: 39369208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling RNA-Seq data with a zero-inflated mixture Poisson linear model.
    Liu S; Jiang Y; Yu T
    Genet Epidemiol; 2019 Oct; 43(7):786-799. PubMed ID: 31328831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based autoencoders for imputing discrete single-cell RNA-seq data.
    Tian T; Min MR; Wei Z
    Methods; 2021 Aug; 192():112-119. PubMed ID: 32971193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iDESC: identifying differential expression in single-cell RNA sequencing data with multiple subjects.
    Liu Y; Zhao J; Adams TS; Wang N; Schupp JC; Wu W; McDonough JE; Chupp GL; Kaminski N; Wang Z; Yan X
    BMC Bioinformatics; 2023 Aug; 24(1):318. PubMed ID: 37608264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying next-generation sequencing data using a zero-inflated Poisson model.
    Zhou Y; Wan X; Zhang B; Tong T
    Bioinformatics; 2018 Apr; 34(8):1329-1335. PubMed ID: 29186294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.
    Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM
    Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of statistical methods for modeling count data with an application to hospital length of stay.
    Fernandez GA; Vatcheva KP
    BMC Med Res Methodol; 2022 Aug; 22(1):211. PubMed ID: 35927612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local influence measure of zero-inflated generalized Poisson mixture regression models.
    Chen XD; Fu YZ; Wang XR
    Stat Med; 2013 Apr; 32(8):1294-312. PubMed ID: 22903860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros.
    Kassahun W; Neyens T; Molenberghs G; Faes C; Verbeke G
    Stat Med; 2014 Nov; 33(25):4402-19. PubMed ID: 24957791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification and statistical modeling of droplet-based single-nucleus RNA-sequencing data.
    Kuo A; Hansen KD; Hicks SC
    Biostatistics; 2024 Jul; 25(3):801-817. PubMed ID: 37257175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZERO-INFLATED QUANTILE RANK-SCORE BASED TEST (ZIQRANK) WITH APPLICATION TO SCRNA-SEQ DIFFERENTIAL GENE EXPRESSION ANALYSIS.
    Ling W; Zhang W; Cheng B; Wei Y
    Ann Appl Stat; 2021 Dec; 15(4):1673-1696. PubMed ID: 35116085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian variable selection for multivariate zero-inflated models: Application to microbiome count data.
    Lee KH; Coull BA; Moscicki AB; Paster BJ; Starr JR
    Biostatistics; 2020 Jul; 21(3):499-517. PubMed ID: 30590511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.