BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 33720462)

  • 1. MC
    Lee J; Kim B; Park H
    Magn Reson Med; 2021 Aug; 86(2):1077-1092. PubMed ID: 33720462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised motion artifact correction of turbo spin-echo MRI using deep image prior.
    Lee J; Seo H; Lee W; Park H
    Magn Reson Med; 2024 Jul; 92(1):28-42. PubMed ID: 38282279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacked U-Nets with self-assisted priors towards robust correction of rigid motion artifact in brain MRI.
    Al-Masni MA; Lee S; Yi J; Kim S; Gho SM; Choi YH; Kim DH
    Neuroimage; 2022 Oct; 259():119411. PubMed ID: 35753594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A knowledge interaction learning for multi-echo MRI motion artifact correction towards better enhancement of SWI.
    Al-Masni MA; Lee S; Al-Shamiri AK; Gho SM; Choi YH; Kim DH
    Comput Biol Med; 2023 Feb; 153():106553. PubMed ID: 36641933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrospective respiratory motion correction in cardiac cine MRI reconstruction using adversarial autoencoder and unsupervised learning.
    Ghodrati V; Bydder M; Ali F; Gao C; Prosper A; Nguyen KL; Hu P
    NMR Biomed; 2021 Feb; 34(2):e4433. PubMed ID: 33258197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based motion quantification from k-space for fast model-based magnetic resonance imaging motion correction.
    Hossbach J; Splitthoff DN; Cauley S; Clifford B; Polak D; Lo WC; Meyer H; Maier A
    Med Phys; 2023 Apr; 50(4):2148-2161. PubMed ID: 36433748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB).
    Liu J; Kocak M; Supanich M; Deng J
    Magn Reson Imaging; 2020 Sep; 71():69-79. PubMed ID: 32428549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI motion artifact reduction using a conditional diffusion probabilistic model (MAR-CDPM).
    Safari M; Yang X; Fatemi A; Archambault L
    Med Phys; 2024 Apr; 51(4):2598-2610. PubMed ID: 38009583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressing motion artefacts in MRI using an Inception-ResNet network with motion simulation augmentation.
    Pawar K; Chen Z; Shah NJ; Egan GF
    NMR Biomed; 2022 Apr; 35(4):e4225. PubMed ID: 31865624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions.
    Duffy BA; Zhao L; Sepehrband F; Min J; Wang DJ; Shi Y; Toga AW; Kim H;
    Neuroimage; 2021 Apr; 230():117756. PubMed ID: 33460797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.
    Duong STM; Phung SL; Bouzerdoum A; Schira MM
    Magn Reson Imaging; 2020 Sep; 71():1-10. PubMed ID: 32407764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network.
    Sommer K; Saalbach A; Brosch T; Hall C; Cross NM; Andre JB
    AJNR Am J Neuroradiol; 2020 Mar; 41(3):416-423. PubMed ID: 32054615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised MRI motion artifact disentanglement: introducing MAUDGAN.
    Safari M; Yang X; Chang CW; Qiu RLJ; Fatemi A; Archambault L
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38714192
    [No Abstract]   [Full Text] [Related]  

  • 16. Multimodal MRI synthesis using unified generative adversarial networks.
    Dai X; Lei Y; Fu Y; Curran WJ; Liu T; Mao H; Yang X
    Med Phys; 2020 Dec; 47(12):6343-6354. PubMed ID: 33053202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Improvement of Motion Artifacts in Brain MRI Using Deep Learning by Simulation Training Data].
    Muro I; Shimizu S; Tsukamoto H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2022; 78(1):13-22. PubMed ID: 35046218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
    Gong E; Pauly JM; Wintermark M; Zaharchuk G
    J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigid motion correction for magnetic resonance fingerprinting with sliding-window reconstruction and image registration.
    Xu Z; Ye H; Lyu M; He H; Zhong J; Mei Y; Chen Z; Wu EX; Chen W; Feng Q; Feng Y
    Magn Reson Imaging; 2019 Apr; 57():303-312. PubMed ID: 30439513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.