BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33720692)

  • 1. Quantification of Single-Molecule Protein Binding Kinetics in Complex Media with Prism-Coupled Plasmonic Scattering Imaging.
    Zhang P; Ma G; Wan Z; Wang S
    ACS Sens; 2021 Mar; 6(3):1357-1366. PubMed ID: 33720692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Scattering Microscopy for Label-Free Imaging of Molecular Binding Kinetics: From Single Molecules to Single Cells.
    Zhang P; Zhou X; Wang S
    Chem Methods; 2023 Jun; 3(6):. PubMed ID: 37448471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free imaging and biomarker analysis of exosomes with plasmonic scattering microscopy.
    Zhang P; Jiang J; Zhou X; Kolay J; Wang R; Wan Z; Wang S
    Chem Sci; 2022 Nov; 13(43):12760-12768. PubMed ID: 36519046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic scattering imaging of single proteins and binding kinetics.
    Zhang P; Ma G; Dong W; Wan Z; Wang S; Tao N
    Nat Methods; 2020 Oct; 17(10):1010-1017. PubMed ID: 32958922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-Free Imaging of Nanoscale Displacements and Free-Energy Profiles of Focal Adhesions with Plasmonic Scattering Microscopy.
    Zhang P; Zhou X; Wang R; Jiang J; Wan Z; Wang S
    ACS Sens; 2021 Nov; 6(11):4244-4254. PubMed ID: 34711049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Analysis of Membrane-Protein Binding Kinetics and Cell-Surface Adhesion Using Plasmonic Scattering Microscopy.
    Zhang P; Zhou X; Jiang J; Kolay J; Wang R; Ma G; Wan Z; Wang S
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209469. PubMed ID: 35922374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein binding kinetics quantification via coupled plasmonic-photonic resonance nanosensors in generic microplate reader.
    Dang T; Hu W; Zhang W; Song Z; Wang Y; Chen M; Xu H; Liu GL
    Biosens Bioelectron; 2019 Oct; 142():111494. PubMed ID: 31319329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of small molecule binding kinetics on a protein microarray by plasmonic-based electrochemical impedance imaging.
    Liang W; Wang S; Festa F; Wiktor P; Wang W; Magee M; LaBaer J; Tao N
    Anal Chem; 2014 Oct; 86(19):9860-5. PubMed ID: 25153794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-Protein Interactions: Surface Plasmon Resonance.
    Douzi B
    Methods Mol Biol; 2017; 1615():257-275. PubMed ID: 28667619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Multimetric Measurement of Molecular Binding Kinetics by Electrical Modulation of a Flexible Nanobiolayer.
    Zhou X; Ma G; Wan Z; Wang S
    ACS Sens; 2022 Nov; 7(11):3461-3469. PubMed ID: 36273329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Single Molecule Binding and Free Energy Profile with Plasmonic Imaging of Nanoparticles.
    Wang H; Tang Z; Wang Y; Ma G; Tao N
    J Am Chem Soc; 2019 Oct; 141(40):16071-16078. PubMed ID: 31525042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Quantification of Protein Binding Kinetics in Whole Cells with Surface Plasmon Resonance Imaging and Edge Deformation Tracking.
    Jing W; Hunt A; Tao N; Zhang F; Wang S
    Membranes (Basel); 2020 Sep; 10(9):. PubMed ID: 32971834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Surface Plasmon Resonance to Quantitatively Assess Lipid-Protein Interactions.
    Del Vecchio K; Stahelin RV
    Methods Mol Biol; 2016; 1376():141-53. PubMed ID: 26552681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments.
    Eng L; Nygren-Babol L; Hanning A
    Anal Biochem; 2016 Oct; 510():79-87. PubMed ID: 27325502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single unlabeled protein detection on individual plasmonic nanoparticles.
    Ament I; Prasad J; Henkel A; Schmachtel S; Sönnichsen C
    Nano Lett; 2012 Feb; 12(2):1092-5. PubMed ID: 22268768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance.
    Bocquet N; Kohler J; Hug MN; Kusznir EA; Rufer AC; Dawson RJ; Hennig M; Ruf A; Huber W; Huber S
    Biochim Biophys Acta; 2015 May; 1848(5):1224-33. PubMed ID: 25725488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric flow field-flow fractionation coupled to surface plasmon resonance detection for analysis of therapeutic proteins in blood serum.
    Leeman M; Albers WM; Bombera R; Kuncova-Kallio J; Tuppurainen J; Nilsson L
    Anal Bioanal Chem; 2021 Jan; 413(1):117-127. PubMed ID: 33098467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance sensing: from purified biomolecules to intact cells.
    Su YW; Wang W
    Anal Bioanal Chem; 2018 Jul; 410(17):3943-3951. PubMed ID: 29651526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.