BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33720716)

  • 1. Elusive Intermediate State Key in the Conversion of ATP Hydrolysis into Useful Work Driving the Ca
    Thirman J; Rui H; Roux B
    J Phys Chem B; 2021 Mar; 125(11):2921-2928. PubMed ID: 33720716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational Transitions and Alternating-Access Mechanism in the Sarcoplasmic Reticulum Calcium Pump.
    Das A; Rui H; Nakamoto R; Roux B
    J Mol Biol; 2017 Mar; 429(5):647-666. PubMed ID: 28093226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton Countertransport and Coupled Gating in the Sarcoplasmic Reticulum Calcium Pump.
    Rui H; Das A; Nakamoto R; Roux B
    J Mol Biol; 2018 Dec; 430(24):5050-5065. PubMed ID: 30539761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-level characterization of the activation mechanism of SERCA by calcium.
    Espinoza-Fonseca LM; Thomas DD
    PLoS One; 2011; 6(10):e26936. PubMed ID: 22046418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of the conformational and functional regulation of human SERCA2b, the ubiquitous endoplasmic reticulum calcium pump.
    Zhang Y; Inaba K
    Bioessays; 2022 Jul; 44(7):e2200052. PubMed ID: 35560336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capsaicin stimulates uncoupled ATP hydrolysis by the sarcoplasmic reticulum calcium pump.
    Mahmmoud YA
    J Biol Chem; 2008 Aug; 283(31):21418-26. PubMed ID: 18539598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tilting motion of the central core reveals the transport mechanism of the sarco/endoplasmic reticulum Ca
    Ma R; Briggs JM
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):132000. PubMed ID: 38697445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The N Terminus of Sarcolipin Plays an Important Role in Uncoupling Sarco-endoplasmic Reticulum Ca2+-ATPase (SERCA) ATP Hydrolysis from Ca2+ Transport.
    Sahoo SK; Shaikh SA; Sopariwala DH; Bal NC; Bruhn DS; Kopec W; Khandelia H; Periasamy M
    J Biol Chem; 2015 May; 290(22):14057-67. PubMed ID: 25882845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational memory in the association of the transmembrane protein phospholamban with the sarcoplasmic reticulum calcium pump SERCA.
    Smeazzetto S; Armanious GP; Moncelli MR; Bak JJ; Lemieux MJ; Young HS; Tadini-Buoninsegni F
    J Biol Chem; 2017 Dec; 292(52):21330-21339. PubMed ID: 29081402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation/Dephosphorylation Assays.
    Suzuki H
    Methods Mol Biol; 2016; 1377():211-26. PubMed ID: 26695035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and energetic analysis of metastable intermediate states in the E1P-E2P transition of Ca
    Kobayashi C; Matsunaga Y; Jung J; Sugita Y
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34593638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis for the Function of the C-Terminal Proton Release Pathway in the Calcium Pump.
    Espinoza-Fonseca LM
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What ATP binding does to the Ca
    Kabashima Y; Ogawa H; Nakajima R; Toyoshima C
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18448-18458. PubMed ID: 32675243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsecond molecular dynamics simulations of Mg²⁺- and K⁺-bound E1 intermediate states of the calcium pump.
    Espinoza-Fonseca LM; Autry JM; Thomas DD
    PLoS One; 2014; 9(4):e95979. PubMed ID: 24760008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracing cytoplasmic Ca(2+) ion and water access points in the Ca(2+)-ATPase.
    Musgaard M; Thøgersen L; Schiøtt B; Tajkhorshid E
    Biophys J; 2012 Jan; 102(2):268-77. PubMed ID: 22339863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcolipin and phospholamban inhibit the calcium pump by populating a similar metal ion-free intermediate state.
    Espinoza-Fonseca LM; Autry JM; Thomas DD
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):37-41. PubMed ID: 25983321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for relief of phospholamban-mediated inhibition of the sarcoplasmic reticulum Ca
    Fernández-de Gortari E; Espinoza-Fonseca LM
    J Biol Chem; 2018 Aug; 293(32):12405-12414. PubMed ID: 29934304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content.
    Guerrero-Hernández A; Sánchez-Vázquez VH; Martínez-Martínez E; Sandoval-Vázquez L; Perez-Rosas NC; Lopez-Farias R; Dagnino-Acosta A
    Adv Exp Med Biol; 2020; 1131():337-370. PubMed ID: 31646517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural dynamics of P-type ATPase ion pumps.
    Dyla M; Basse Hansen S; Nissen P; Kjaergaard M
    Biochem Soc Trans; 2019 Oct; 47(5):1247-1257. PubMed ID: 31671180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine 105 as Pivot for a Critical Knee-like Joint between Cytoplasmic and Transmembrane Segments of the Second Transmembrane Helix in Ca2+-ATPase.
    Daiho T; Yamasaki K; Danko S; Suzuki H
    J Biol Chem; 2016 Nov; 291(47):24688-24701. PubMed ID: 27733680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.