These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33720729)

  • 1. Restructuring of Membrane Water and Phospholipids in Direct Interaction of Neurotransmitters with Model Membranes Associated with Synaptic Signaling: Interface-Selective Vibrational Sum Frequency Generation Study.
    Biswas B; Singh PC
    J Phys Chem Lett; 2021 Mar; 12(11):2871-2879. PubMed ID: 33720729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Action of Antimalarial Hydroxychloroquine on the Packing of Phospholipids and Interfacial Water Associated with Lysosomal Model Membranes: A Vibrational Sum Frequency Generation Study.
    Sarkar S; Singh PC
    Langmuir; 2023 Feb; 39(6):2435-2443. PubMed ID: 36735290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity of four polar neurotransmitters for lipid bilayer membranes.
    Wang C; Ye F; Velardez GF; Peters GH; Westh P
    J Phys Chem B; 2011 Jan; 115(1):196-203. PubMed ID: 21158460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of α-Synuclein with Phospholipids and the Associated Restructuring of Interfacial Lipid Water: An Interface-Selective Vibrational Spectroscopic Study.
    Biswas B; Roy S; Mondal JA; Singh PC
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22731-22737. PubMed ID: 32865870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of neurotransmitters with a phospholipid bilayer: a molecular dynamics study.
    Peters GH; Werge M; Elf-Lind MN; Madsen JJ; Velardez GF; Westh P
    Chem Phys Lipids; 2014 Dec; 184():7-17. PubMed ID: 25159594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational sum frequency generation spectroscopic investigation of the interaction of thiocyanate ions with zwitterionic phospholipid monolayers at the air-water interface.
    Viswanath P; Aroti A; Motschmann H; Leontidis E
    J Phys Chem B; 2009 Nov; 113(44):14816-23. PubMed ID: 19824633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study.
    Shen C; Xue M; Qiu H; Guo W
    Chemphyschem; 2017 Mar; 18(6):626-633. PubMed ID: 28054433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic Interactions of Melatonin, Serotonin and Tryptophan with Zwitterionic Phospholipid Membranes.
    Martí J; Lu H
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of a neurotransmitter:sodium symporter in a lipid bilayer.
    Adhikary S; Deredge DJ; Nagarajan A; Forrest LR; Wintrode PL; Singh SK
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1786-E1795. PubMed ID: 28223522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of the spontaneous aggregation of phospholipids into bilayers.
    Marrink SJ; Lindahl E; Edholm O; Mark AE
    J Am Chem Soc; 2001 Sep; 123(35):8638-9. PubMed ID: 11525689
    [No Abstract]   [Full Text] [Related]  

  • 11. The complex nature of calcium cation interactions with phospholipid bilayers.
    Melcrová A; Pokorna S; Pullanchery S; Kohagen M; Jurkiewicz P; Hof M; Jungwirth P; Cremer PS; Cwiklik L
    Sci Rep; 2016 Dec; 6():38035. PubMed ID: 27905555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Dynamics at Lipid-Water Interfaces.
    Flanagan JC; Valentine ML; Baiz CR
    Acc Chem Res; 2020 Sep; 53(9):1860-1868. PubMed ID: 32866390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the Origin of the Apparent Charge of Zwitterionic Lipid Layers.
    Dreier LB; Wolde-Kidan A; Bonthuis DJ; Netz RR; Backus EHG; Bonn M
    J Phys Chem Lett; 2019 Oct; 10(20):6355-6359. PubMed ID: 31568720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared study of the structure and composition of rabbit lens membranes: a comparative analysis of the lipids of the nucleus, cortex and epithelium.
    Lamba OP; Borchman D; Garner WH
    Exp Eye Res; 1993 Jul; 57(1):1-12. PubMed ID: 8405165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Intermolecular Interactions in Phospholipid Bilayers by Far-Infrared Spectroscopy.
    D'Angelo G; Conti Nibali V; Crupi C; Rifici S; Wanderlingh U; Paciaroni A; Sacchetti F; Branca C
    J Phys Chem B; 2017 Feb; 121(6):1204-1210. PubMed ID: 28118017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation study of the interaction of trehalose with lipid membranes.
    Villarreal MA; Díaz SB; Disalvo EA; Montich GG
    Langmuir; 2004 Aug; 20(18):7844-51. PubMed ID: 15323539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier transform infrared spectroscopic studies of the interaction of the antimicrobial peptide gramicidin S with lipid micelles and with lipid monolayer and bilayer membranes.
    Lewis RN; Prenner EJ; Kondejewski LH; Flach CR; Mendelsohn R; Hodges RS; McElhaney RN
    Biochemistry; 1999 Nov; 38(46):15193-203. PubMed ID: 10563802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial vibrational spectroscopy and Brewster angle microscopy distinguishing the interaction of terpineol in cell membrane models at the air-water interface.
    Jaroque GN; Sartorelli P; Caseli L
    Biophys Chem; 2019 Mar; 246():1-7. PubMed ID: 30594881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of phospholipid bilayers with cholesterol.
    Hofsäss C; Lindahl E; Edholm O
    Biophys J; 2003 Apr; 84(4):2192-206. PubMed ID: 12668428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.