These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 33721280)
21. Incorporating Zinc Metal Sites in Aluminum-Coordinated Porphyrin Metal-Organic Frameworks for Enhanced Photocatalytic Nitrogen Reduction to Ammonia. Liu R; Wu H; Chung HY; Utomo WP; Tian Y; Shang J; Sit PH; Ng YH Small; 2024 Nov; 20(44):e2402779. PubMed ID: 39082205 [TBL] [Abstract][Full Text] [Related]
22. Nanoscale Synthesis of Two Porphyrin-Based MOFs with Gallium and Indium. Rhauderwiek T; Waitschat S; Wuttke S; Reinsch H; Bein T; Stock N Inorg Chem; 2016 Jun; 55(11):5312-9. PubMed ID: 27203724 [TBL] [Abstract][Full Text] [Related]
23. Hierarchical S-scheme titanium dioxide@cobalt-nickel based metal-organic framework nanotube photocatalyst for selective carbon dioxide photoreduction to methane. Liang S; Chen Y; Han W; Jiao Y; Li W; Tian G J Colloid Interface Sci; 2023 Jan; 630(Pt A):11-22. PubMed ID: 36215820 [TBL] [Abstract][Full Text] [Related]
24. Visible-Light-Driven Porphyrin-Based Bimetallic Metal-Organic Frameworks for Selective Photoreduction of Nitro Compounds under Mild Conditions. Wang S; Li S; Feng H; Yang W; Feng YS ACS Appl Mater Interfaces; 2023 Jan; 15(3):4845-4856. PubMed ID: 36629327 [TBL] [Abstract][Full Text] [Related]
25. Nickel Metal-Organic Framework Monolayers for Photoreduction of Diluted CO Han B; Ou X; Deng Z; Song Y; Tian C; Deng H; Xu YJ; Lin Z Angew Chem Int Ed Engl; 2018 Dec; 57(51):16811-16815. PubMed ID: 30402925 [TBL] [Abstract][Full Text] [Related]
26. Metal-free azo-bridged porphyrin porous organic polymers for visible-light-driven CO Hou Y; Zhang E; Gao J; Zhang S; Liu P; Wang JC; Zhang Y; Cui CX; Jiang J Dalton Trans; 2020 Jun; 49(22):7592-7597. PubMed ID: 32459270 [TBL] [Abstract][Full Text] [Related]
27. In Situ Porphyrin Substitution in a Zr(IV)-MOF for Stability Enhancement and Photocatalytic CO Kong XJ; He T; Zhou J; Zhao C; Li TC; Wu XQ; Wang K; Li JR Small; 2021 Jun; 17(22):e2005357. PubMed ID: 33615728 [TBL] [Abstract][Full Text] [Related]
28. A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO Bi J; Xu B; Sun L; Huang H; Fang S; Li L; Wu L Chempluschem; 2019 Aug; 84(8):1149-1154. PubMed ID: 31943960 [TBL] [Abstract][Full Text] [Related]
29. Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Sun D; Fu Y; Liu W; Ye L; Wang D; Yang L; Fu X; Li Z Chemistry; 2013 Oct; 19(42):14279-85. PubMed ID: 24038375 [TBL] [Abstract][Full Text] [Related]
30. Visible-Light-Driven Reduction of CO Hou Y; Ma H; Li J; Li S; Wang JC; Qu LB; Lou T; Cui CX Langmuir; 2024 Aug; 40(31):16113-16120. PubMed ID: 39051840 [TBL] [Abstract][Full Text] [Related]
31. Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal-organic frameworks: synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Li S; Mei HM; Yao SL; Chen ZY; Lu YL; Zhang L; Su CY Chem Sci; 2019 Dec; 10(45):10577-10585. PubMed ID: 32110343 [TBL] [Abstract][Full Text] [Related]
32. Engineering the Surface of a Polymeric Photocatalyst for Stable Solar-to-Chemical Fuel Conversion from Seawater. Mishra B; Mishra S; Satpati B; Chaudhary YS ChemSusChem; 2019 Jul; 12(14):3383-3389. PubMed ID: 31124304 [TBL] [Abstract][Full Text] [Related]
33. Nanocrystal/Metal-Organic Framework Hybrids as Electrocatalytic Platforms for CO Guntern YT; Pankhurst JR; Vávra J; Mensi M; Mantella V; Schouwink P; Buonsanti R Angew Chem Int Ed Engl; 2019 Sep; 58(36):12632-12639. PubMed ID: 31287203 [TBL] [Abstract][Full Text] [Related]
34. One-pot Synthesis of Metal-coordinated Covalent Organic Frameworks for Enhanced CO Xue H; Yin C; Xiong S; Yang J; Wang Y ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315841 [TBL] [Abstract][Full Text] [Related]
35. Porphyrin metal-organic frameworks with bilayer and pillar-layered frameworks and third-order nonlinear optical properties. Zhu Z; Wang Z; Li QH; Ma Z; Wang F; Zhang J Dalton Trans; 2023 Apr; 52(14):4309-4314. PubMed ID: 36951491 [TBL] [Abstract][Full Text] [Related]
36. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au). Sun D; Liu W; Fu Y; Fang Z; Sun F; Fu X; Zhang Y; Li Z Chemistry; 2014 Apr; 20(16):4780-8. PubMed ID: 24644131 [TBL] [Abstract][Full Text] [Related]
37. Opposite photocatalytic activity orders of low-index facets of anatase TiO₂ for liquid phase dye degradation and gaseous phase CO₂ photoreduction. Ye L; Mao J; Peng T; Zan L; Zhang Y Phys Chem Chem Phys; 2014 Aug; 16(29):15675-80. PubMed ID: 24960436 [TBL] [Abstract][Full Text] [Related]
38. Self-templated synthesis of Co Ren JT; Zheng YL; Yuan K; Zhou L; Wu K; Zhang YW Nanoscale; 2020 Jan; 12(2):755-762. PubMed ID: 31829368 [TBL] [Abstract][Full Text] [Related]
39. Carbene insertion into N-H bonds with size-selectivity induced by a microporous ruthenium-porphyrin metal-organic framework. Chen L; Cui H; Wang Y; Liang X; Zhang L; Su CY Dalton Trans; 2018 Mar; 47(11):3940-3946. PubMed ID: 29459932 [TBL] [Abstract][Full Text] [Related]
40. Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Dhakshinamoorthy A; Asiri AM; García H Angew Chem Int Ed Engl; 2016 Apr; 55(18):5414-45. PubMed ID: 26970539 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]