These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33721690)

  • 1. Multi-segment phase coupling to oscillatory visual drive.
    Engel D; Schwenk JCB; Schütz A; Morris AP; Bremmer F
    Gait Posture; 2021 May; 86():132-138. PubMed ID: 33721690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-trial phase coherence of visually evoked postural responses in virtual reality.
    Engel D; Schütz A; Krala M; Schwenk JCB; Morris AP; Bremmer F
    Exp Brain Res; 2020 May; 238(5):1177-1189. PubMed ID: 32239245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual perturbation of balance suggests impaired motor control but intact visuomotor processing in Parkinson's disease.
    Engel D; Student J; Schwenk JCB; Morris AP; Waldthaler J; Timmermann L; Bremmer F
    J Neurophysiol; 2021 Oct; 126(4):1076-1089. PubMed ID: 34469704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phobic postural vertigo. Body sway during visually induced roll vection.
    Querner V; Krafczyk S; Dieterich M; Brandt T
    Exp Brain Res; 2002 Apr; 143(3):269-75. PubMed ID: 11889504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swaying to the complex motion of a visual target affects postural sway variability.
    Sotirakis H; Patikas D; Stergiou N; Hatzitaki V
    Gait Posture; 2020 Mar; 77():125-131. PubMed ID: 32028079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaos in balance: non-linear measures of postural control predict individual variations in visual illusions of motion.
    Apthorp D; Nagle F; Palmisano S
    PLoS One; 2014; 9(12):e113897. PubMed ID: 25462216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual dependence affects postural sway responses to continuous visual field motion in individuals with cerebral palsy.
    Yu Y; Lauer RT; Tucker CA; Thompson ED; Keshner EA
    Dev Neurorehabil; 2018 Nov; 21(8):531-541. PubMed ID: 29341797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parkinson's disease does not alter automatic visual-motor coupling in postural control.
    Cruz CF; Piemonte MEP; Okai-Nobrega LA; Okamoto E; Fortaleza ACS; Mancini M; Horak FB; Barela JA
    Neurosci Lett; 2018 Nov; 686():47-52. PubMed ID: 30193795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postural sway in the moving room scenario: New evidence for functional dissociation between self-motion perception and postural control.
    Horiuchi K; Imanaka K; Ishihara M
    PLoS One; 2021; 16(9):e0257212. PubMed ID: 34506567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness.
    Li R; Peterson N; Walter HJ; Rath R; Curry C; Stoffregen TA
    Gait Posture; 2018 Sep; 65():251-255. PubMed ID: 30558940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition of COM-COP relative phase in a dynamic balance task.
    Ko JH; Challis JH; Newell KM
    Hum Mov Sci; 2014 Dec; 38():1-14. PubMed ID: 25240175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.
    Kilby MC; Molenaar PC; Slobounov SM; Newell KM
    Exp Brain Res; 2017 Jan; 235(1):109-120. PubMed ID: 27644409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postural responses to sinusoidal modulations of viewpoint position in a virtual environment.
    Garner JJ; D'Zmura M
    Exp Brain Res; 2020 Jun; 238(6):1385-1398. PubMed ID: 32361912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging affects postural tracking of complex visual motion cues.
    Sotirakis H; Kyvelidou A; Mademli L; Stergiou N; Hatzitaki V
    Exp Brain Res; 2016 Sep; 234(9):2529-40. PubMed ID: 27126061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of different visual biofeedback signals for human balance improvement.
    Halická Z; Lobotková J; Bučková K; Hlavačka F
    Gait Posture; 2014; 39(1):410-4. PubMed ID: 24001870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness.
    Koslucher F; Haaland E; Stoffregen TA
    Exp Brain Res; 2016 Jan; 234(1):313-22. PubMed ID: 26466829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of immersion in virtual reality on postural control.
    Akizuki H; Uno A; Arai K; Morioka S; Ohyama S; Nishiike S; Tamura K; Takeda N
    Neurosci Lett; 2005 Apr; 379(1):23-6. PubMed ID: 15814192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual Perturbation Suggests Increased Effort to Maintain Balance in Early Stages of Parkinson's to be an Effect of Age Rather Than Disease.
    Student J; Engel D; Timmermann L; Bremmer F; Waldthaler J
    Front Hum Neurosci; 2022; 16():762380. PubMed ID: 35308620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual assessment of environmental stability modulates postural sway.
    Cooper N; Cant I; White MD; Meyer GF
    PLoS One; 2018; 13(11):e0206218. PubMed ID: 30412590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.