These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 33721852)
1. A convolutional neural network to identify motor units from high-density surface electromyography signals in real time. Wen Y; Avrillon S; Hernandez-Pavon JC; Kim SJ; Hug F; Pons JL J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721852 [No Abstract] [Full Text] [Related]
2. Toward a generalizable deep CNN for neural drive estimation across muscles and participants. Wen Y; Kim SJ; Avrillon S; Levine JT; Hug F; Pons JL J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548991 [No Abstract] [Full Text] [Related]
3. A Deep CNN Framework for Neural Drive Estimation From HD-EMG Across Contraction Intensities and Joint Angles. Wen Y; Kim SJ; Avrillon S; Levine JT; Hug F; Pons JL IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2950-2959. PubMed ID: 36251912 [TBL] [Abstract][Full Text] [Related]
4. Transformer-based hand gesture recognition from instantaneous to fused neural decomposition of high-density EMG signals. Montazerin M; Rahimian E; Naderkhani F; Atashzar SF; Yanushkevich S; Mohammadi A Sci Rep; 2023 Jul; 13(1):11000. PubMed ID: 37419881 [TBL] [Abstract][Full Text] [Related]
5. Segment-Wise Decomposition of Surface Electromyography to Identify Discharges Across Motor Neuron Populations. Chen C; Ma S; Yu Y; Sheng X; Zhu X IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2012-2021. PubMed ID: 35853067 [TBL] [Abstract][Full Text] [Related]
6. High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network. Chen J; Bi S; Zhang G; Cao G Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098264 [TBL] [Abstract][Full Text] [Related]
7. Real-time finger force prediction via parallel convolutional neural networks: a preliminary study. Xu F; Zheng Y; Hu X Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3126-3129. PubMed ID: 33018667 [TBL] [Abstract][Full Text] [Related]
8. Adaptive Real-Time Identification of Motor Unit Discharges From Non-Stationary High-Density Surface Electromyographic Signals. Chen C; Ma S; Sheng X; Farina D; Zhu X IEEE Trans Biomed Eng; 2020 Dec; 67(12):3501-3509. PubMed ID: 32324538 [TBL] [Abstract][Full Text] [Related]
9. Accuracy assessment of CKC high-density surface EMG decomposition in biceps femoris muscle. Marateb HR; McGill KC; Holobar A; Lateva ZC; Mansourian M; Merletti R J Neural Eng; 2011 Dec; 8(6):066002. PubMed ID: 21975280 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning for Robust Decomposition of High-Density Surface EMG Signals. Clarke AK; Atashzar SF; Vecchio AD; Barsakcioglu D; Muceli S; Bentley P; Urh F; Holobar A; Farina D IEEE Trans Biomed Eng; 2021 Feb; 68(2):526-534. PubMed ID: 32746049 [TBL] [Abstract][Full Text] [Related]
11. Real-time isometric finger extension force estimation based on motor unit discharge information. Zheng Y; Hu X J Neural Eng; 2019 Oct; 16(6):066006. PubMed ID: 31234147 [TBL] [Abstract][Full Text] [Related]
12. Real-time motor unit identification from high-density surface EMG. Glaser V; Holobar A; Zazula D IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):949-58. PubMed ID: 23475379 [TBL] [Abstract][Full Text] [Related]
13. Real-Time Hand Gesture Recognition by Decoding Motor Unit Discharges Across Multiple Motor Tasks From Surface Electromyography. Chen C; Yu Y; Sheng X; Meng J; Zhu X IEEE Trans Biomed Eng; 2023 Jul; 70(7):2058-2068. PubMed ID: 37018607 [TBL] [Abstract][Full Text] [Related]
14. A fast gradient convolution kernel compensation method for surface electromyogram decomposition. Lin C; Cui Z; Chen C; Liu Y; Chen C; Jiang N J Electromyogr Kinesiol; 2024 Jun; 76():102869. PubMed ID: 38479095 [TBL] [Abstract][Full Text] [Related]
15. Classification of Action Potentials With High Variability Using Convolutional Neural Network for Motor Unit Tracking. Li Y; Zheng Y; Xu G; Zhang S; Liang R; Ji R IEEE Trans Neural Syst Rehabil Eng; 2024; 32():905-914. PubMed ID: 38335077 [TBL] [Abstract][Full Text] [Related]
16. A generic neural network model to estimate populational neural activity for robust neural decoding. Roy R; Xu F; Kamper DG; Hu X Comput Biol Med; 2022 May; 144():105359. PubMed ID: 35247763 [TBL] [Abstract][Full Text] [Related]
17. Noninvasive, accurate assessment of the behavior of representative populations of motor units in targeted reinnervated muscles. Farina D; Rehbaum H; Holobar A; Vujaklija I; Jiang N; Hofer C; Salminger S; van Vliet HW; Aszmann OC IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):810-9. PubMed ID: 24760935 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous and proportional control of wrist and hand movements by decoding motor unit discharges in real time. Chen C; Yu Y; Sheng X; Farina D; Zhu X J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33764315 [No Abstract] [Full Text] [Related]
19. High-Density Surface EMG Decomposition by Combining Iterative Convolution Kernel Compensation With an Energy-Specific Peel-off Strategy. Zheng Y; Ma Y; Liu Y; Houston M; Guo C; Lian Q; Li S; Zhou P; Zhang Y IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3641-3651. PubMed ID: 37656648 [TBL] [Abstract][Full Text] [Related]
20. EMG signal decomposition using motor unit potential train validity. Parsaei H; Stashuk DW IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):265-74. PubMed ID: 23033332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]