BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33721854)

  • 1. Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically 'charge-discharge' electrolyte.
    Li G; Wang S; Li M; Duan YY
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721854
    [No Abstract]   [Full Text] [Related]  

  • 2. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 3. Flexible Multi-Layer Semi-Dry Electrode for Scalp EEG Measurements at Hairy Sites.
    Hua H; Tang W; Xu X; Feng DD; Shu L
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31382695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography.
    Pedrosa P; Fiedler P; Pestana V; Vasconcelos B; Gaspar H; Amaral MH; Freitas D; Haueisen J; Nóbrega JM; Fonseca C
    Biomed Tech (Berl); 2018 Jul; 63(4):349-359. PubMed ID: 28467306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of semi-dry electrodes for EEG recording.
    Li GL; Wu JT; Xia YH; He QG; Jin HG
    J Neural Eng; 2020 Oct; 17(5):051004. PubMed ID: 33002886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel semi-dry electrodes for brain-computer interface applications.
    Wang F; Li G; Chen J; Duan Y; Zhang D
    J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel flexible hydrogel electrode with a strong moisturizing ability for long-term EEG recording.
    Shen G; Gao K; Zhao N; Yi Z; Jiang C; Yang B; Liu J
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34883478
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of Dry-Contact EEG Electrodes and an Empirical Comparison of Ag/AgCl and IrO
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3127-3130. PubMed ID: 36086317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal correlation between wet and original dry electrodes in electroencephalogram according to the contact impedance of dry electrodes.
    Higashi Y; Yokota Y; Naruse Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1062-1065. PubMed ID: 29060057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition.
    Damalerio RB; Lim R; Gao Y; Zhang TT; Cheng MY
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
    Li P; Yin C; Li M; Li H; Yang B
    Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of High-Density Electrodes For EEG Acquisition.
    Xing X; Pei W; Wang Y; Liu Z; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1295-1298. PubMed ID: 30440628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry-Contact Electrode Ear-EEG.
    Kappel SL; Rank ML; Toft HO; Andersen M; Kidmose P
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):150-158. PubMed ID: 29993415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas.
    Wang Z; Ding Y; Yuan W; Chen H; Chen W; Chen C
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of impedance spectra for dry and wet EarEEG electrodes.
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3161-4. PubMed ID: 26736963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.