These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33721858)

  • 1. Computational investigation of the impact of deep brain stimulation contact size and shape on neural selectivity.
    Anderson DN; Dorval AD; Rolston JD; Pulst SM; Anderson CJ
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33721858
    [No Abstract]   [Full Text] [Related]  

  • 2. Neural selectivity, efficiency, and dose equivalence in deep brain stimulation through pulse width tuning and segmented electrodes.
    Anderson CJ; Anderson DN; Pulst SM; Butson CR; Dorval AD
    Brain Stimul; 2020; 13(4):1040-1050. PubMed ID: 32278715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical deep brain stimulation strategies for orientation-selective pathway activation.
    Slopsema JP; Peña E; Patriat R; Lehto LJ; Gröhn O; Mangia S; Harel N; Michaeli S; Johnson MD
    J Neural Eng; 2018 Oct; 15(5):056029. PubMed ID: 30095084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead.
    van Dijk KJ; Verhagen R; Bour LJ; Heida C; Veltink PH
    Neuromodulation; 2018 Aug; 21(6):553-561. PubMed ID: 29034586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.
    Anderson DN; Osting B; Vorwerk J; Dorval AD; Butson CR
    J Neural Eng; 2018 Apr; 15(2):026005. PubMed ID: 29235446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation.
    Anderson DN; Duffley G; Vorwerk J; Dorval AD; Butson CR
    J Neural Eng; 2019 Feb; 16(1):016026. PubMed ID: 30275348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of methodologies for modeling directional deep brain stimulation electrodes.
    Frankemolle-Gilbert AM; Howell B; Bower KL; Veltink PH; Heida T; McIntyre CC
    PLoS One; 2021; 16(12):e0260162. PubMed ID: 34910744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study.
    Yousif N; Purswani N; Bayford R; Nandi D; Bain P; Liu X
    J Neurosci Methods; 2010 Apr; 188(1):105-12. PubMed ID: 20116398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical basis of subthalamic local field potentials recorded from deep brain stimulation electrodes.
    Maling N; Lempka SF; Blumenfeld Z; Bronte-Stewart H; McIntyre CC
    J Neurophysiol; 2018 Oct; 120(4):1932-1944. PubMed ID: 30020838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.
    McIntyre CC; Grill WM; Sherman DL; Thakor NV
    J Neurophysiol; 2004 Apr; 91(4):1457-69. PubMed ID: 14668299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation.
    Chaturvedi A; Luján JL; McIntyre CC
    J Neural Eng; 2013 Oct; 10(5):056023. PubMed ID: 24060691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Recessed Electrode Geometries to Minimize Tissue Damage with Directional Selectivity in Deep Brain Stimulation.
    Radhakrishnan S; Ondar K; Rameeza A; Wei X
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3634-3637. PubMed ID: 33018789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
    Butson CR; McIntyre CC
    Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.
    van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH
    J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of pedunculopontine nucleus deep brain stimulation.
    Zitella LM; Mohsenian K; Pahwa M; Gloeckner C; Johnson MD
    J Neural Eng; 2013 Aug; 10(4):045005. PubMed ID: 23723145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The μDBS: Multiresolution, Directional Deep Brain Stimulation for Improved Targeting of Small Diameter Fibers.
    Anderson DN; Anderson C; Lanka N; Sharma R; Butson CR; Baker BW; Dorval AD
    Front Neurosci; 2019; 13():1152. PubMed ID: 31736693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.