BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33721895)

  • 1. Plant apocarotenoid metabolism utilizes defense mechanisms against reactive carbonyl species and xenobiotics.
    Koschmieder J; Wüst F; Schaub P; Álvarez D; Trautmann D; Krischke M; Rustenholz C; Mano J; Mueller MJ; Bartels D; Hugueney P; Beyer P; Welsch R
    Plant Physiol; 2021 Mar; 185(2):331-351. PubMed ID: 33721895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves.
    Lätari K; Wüst F; Hübner M; Schaub P; Beisel KG; Matsubara S; Beyer P; Welsch R
    Plant Physiol; 2015 Aug; 168(4):1550-62. PubMed ID: 26134165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Color recycling: metabolization of apocarotenoid degradation products suggests carbon regeneration via primary metabolic pathways.
    Koschmieder J; Alseekh S; Shabani M; Baltenweck R; Maurino VG; Palme K; Fernie AR; Hugueney P; Welsch R
    Plant Cell Rep; 2022 Apr; 41(4):961-977. PubMed ID: 35064799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crocus transcription factors CstMYB1 and CstMYB1R2 modulate apocarotenoid metabolism by regulating carotenogenic genes.
    Bhat ZY; Mohiuddin T; Kumar A; López-Jiménez AJ; Ashraf N
    Plant Mol Biol; 2021 Sep; 107(1-2):49-62. PubMed ID: 34417937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.
    Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L
    Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis.
    Baba SA; Mohiuddin T; Basu S; Swarnkar MK; Malik AH; Wani ZA; Abbas N; Singh AK; Ashraf N
    BMC Genomics; 2015 Sep; 16(1):698. PubMed ID: 26370545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery.
    Baba SA; Jain D; Abbas N; Ashraf N
    J Plant Physiol; 2015 Sep; 189():114-25. PubMed ID: 26595090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives.
    Castillo R; Fernández JA; Gómez-Gómez L
    Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis.
    Ashraf N; Jain D; Vishwakarma RA
    BMC Plant Biol; 2015 Feb; 15():25. PubMed ID: 25640597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L.
    Malik AH; Ashraf N
    Mol Genet Genomics; 2017 Jun; 292(3):619-633. PubMed ID: 28247040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus.
    Ahrazem O; Argandoña J; Fiore A; Rujas A; Rubio-Moraga Á; Castillo R; Gómez-Gómez L
    BMC Genomics; 2019 Apr; 20(1):320. PubMed ID: 31029081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A xanthophyll-derived apocarotenoid regulates carotenogenesis in tomato chromoplasts.
    D'Ambrosio C; Stigliani AL; Rambla JL; Frusciante S; Diretto G; Enfissi EMA; Granell A; Fraser PD; Giorio G
    Plant Sci; 2023 Mar; 328():111575. PubMed ID: 36572066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments.
    Rodrigo MJ; Alquézar B; Alós E; Medina V; Carmona L; Bruno M; Al-Babili S; Zacarías L
    J Exp Bot; 2013 Nov; 64(14):4461-78. PubMed ID: 24006419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis.
    Jain M; Srivastava PL; Verma M; Ghangal R; Garg R
    Sci Rep; 2016 Mar; 6():22456. PubMed ID: 26936416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcript profiling of carotenoid/apocarotenoid biosynthesis genes during corm development of saffron (Crocus sativus L.).
    Sharma M; Kaul S; Dhar MK
    Protoplasma; 2019 Jan; 256(1):249-260. PubMed ID: 30078109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apocarotenoids: A New Carotenoid-Derived Pathway.
    Beltran JC; Stange C
    Subcell Biochem; 2016; 79():239-72. PubMed ID: 27485225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids.
    Schaub P; Rodriguez-Franco M; Cazzonelli CI; Álvarez D; Wüst F; Welsch R
    PLoS One; 2018; 13(2):e0192158. PubMed ID: 29394270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation.
    Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L
    BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential interaction of Or proteins with the PSY enzymes in saffron.
    Ahrazem O; López AJ; Argandoña J; Castillo R; Rubio-Moraga Á; Gómez-Gómez L
    Sci Rep; 2020 Jan; 10(1):552. PubMed ID: 31953512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast.
    Tan H; Chen X; Liang N; Chen R; Chen J; Hu C; Li Q; Li Q; Pei W; Xiao W; Yuan Y; Chen W; Zhang L
    J Exp Bot; 2019 Sep; 70(18):4819-4834. PubMed ID: 31056664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.