These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 33721995)

  • 21. Enhancing Efficiency of Large-Area Wide-Bandgap Perovskite Solar Modules with Spontaneously Formed Self-Assembled Monolayer Interfaces.
    Gao M; Xu X; Tian H; Ran P; Jia Z; Su Y; Hui J; Gan X; Zhao S; Zhu H; Lv H; Yang YM
    J Phys Chem Lett; 2024 Apr; 15(15):4015-4023. PubMed ID: 38577843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency.
    Yao Y; Hang P; Li B; Hu Z; Kan C; Xie J; Wang Y; Zhang Y; Yang D; Yu X
    Small; 2022 Sep; 18(38):e2203319. PubMed ID: 35896945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability Assessment of p-i-n Perovskite Photovoltaic Mini-Modules Utilizing Different Top Metal Electrodes.
    Dagar J; Paramasivam G; Klimm C; Fenske M; Schultz C; Schlatmann R; Stegemann B; Unger E
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33924368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fully Textured, Production-Line Compatible Monolithic Perovskite/Silicon Tandem Solar Cells Approaching 29% Efficiency.
    Mao L; Yang T; Zhang H; Shi J; Hu Y; Zeng P; Li F; Gong J; Fang X; Sun Y; Liu X; Du J; Han A; Zhang L; Liu W; Meng F; Cui X; Liu Z; Liu M
    Adv Mater; 2022 Oct; 34(40):e2206193. PubMed ID: 35985840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of low-cost and high-efficiency solar modules based on perovskite solar cells for large-scale applications.
    Hanif MS; Qasim I; Malik MI; Nasir MF; Ahmad O; Rashid A
    Heliyon; 2024 Feb; 10(4):e25703. PubMed ID: 38375263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous Interfacial Modification and Defect Passivation for Wide-Bandgap Semitransparent Perovskite Solar Cells with 14.4% Power Conversion Efficiency and 38% Average Visible Transmittance.
    Shi H; Zhang L; Huang H; Wang X; Li Z; Xuan D; Wang C; Ou Y; Ni C; Li D; Chi D; Huang S
    Small; 2022 Aug; 18(31):e2202144. PubMed ID: 35802913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perovskite/silicon tandem solar cells-compositions for improved stability and power conversion efficiency.
    Marchant C; Williams RM
    Photochem Photobiol Sci; 2024 Jan; 23(1):1-22. PubMed ID: 37991706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. p-i-n Perovskite Solar Cells on Steel Substrates.
    Feleki BT; Bouwer RKM; Zardetto V; Wienk MM; Janssen RAJ
    ACS Appl Energy Mater; 2022 Jun; 5(6):6709-6715. PubMed ID: 35783346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells.
    Shen X; Gallant BM; Holzhey P; Smith JA; Elmestekawy KA; Yuan Z; Rathnayake PVGM; Bernardi S; Dasgupta A; Kasparavicius E; Malinauskas T; Caprioglio P; Shargaieva O; Lin YH; McCarthy MM; Unger E; Getautis V; Widmer-Cooper A; Herz LM; Snaith HJ
    Adv Mater; 2023 Jul; 35(30):e2211742. PubMed ID: 37191054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple and robust phenoxazine phosphonic acid molecules as self-assembled hole selective contacts for high-performance inverted perovskite solar cells.
    Li Z; Tan Q; Chen G; Gao H; Wang J; Zhang X; Xiu J; Chen W; He Z
    Nanoscale; 2023 Jan; 15(4):1676-1686. PubMed ID: 36602232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites.
    Kim J; Saidaminov MI; Tan H; Zhao Y; Kim Y; Choi J; Jo JW; Fan J; Quintero-Bermudez R; Yang Z; Quan LN; Wei M; Voznyy O; Sargent EH
    Adv Mater; 2018 Mar; 30(13):e1706275. PubMed ID: 29441615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully Aromatic Self-Assembled Hole-Selective Layer toward Efficient Inverted Wide-Bandgap Perovskite Solar Cells with Ultraviolet Resistance.
    Li C; Zhang Z; Zhang H; Yan W; Li Y; Liang L; Yu W; Yu X; Wang Y; Yang Y; Nazeeruddin MK; Gao P
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202315281. PubMed ID: 37987092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Multifunctional Polymer as an Interfacial Layer for Efficient and Stable Perovskite Solar Cells.
    Zhang B; Chen C; Wang X; Du X; Liu D; Sun X; Li Z; Hao L; Gao C; Li Y; Shao Z; Wang X; Cui G; Pang S
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202213478. PubMed ID: 36372778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the origin of open-circuit voltage losses in flexible
    Pisoni S; Stolterfoht M; Löckinger J; Moser T; Jiang Y; Caprioglio P; Neher D; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2019; 20(1):786-795. PubMed ID: 31447957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small V
    Zhou X; Zhang L; Wang X; Liu C; Chen S; Zhang M; Li X; Yi W; Xu B
    Adv Mater; 2020 Apr; 32(14):e1908107. PubMed ID: 32100401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the Efficiency and Stability of Triple-Cation Perovskite Solar Cells by Eliminating Excess PbI
    Hu Z; An Q; Xiang H; Aigouy L; Sun B; Vaynzof Y; Chen Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54824-54832. PubMed ID: 33226765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multifunctional Hybrid Interfacial Layers for High-Performance Inverted Perovskite Solar Cells.
    Niu B; Liu H; Huang Y; Gu E; Yan M; Shen Z; Yan K; Yan B; Yao J; Fang Y; Chen H; Li CZ
    Adv Mater; 2023 May; 35(21):e2212258. PubMed ID: 36840924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability.
    Jiang X; Yu Z; Lai J; Zhang Y; Hu M; Lei N; Wang D; Yang X; Sun L
    ChemSusChem; 2017 Apr; 10(8):1838-1845. PubMed ID: 28198594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-Area Perovskite Solar Modules Based on Uniformity Engineering of Perovskite Films: The Critical Role of Methyldiphenylphosphine Oxide Additive.
    Han Y; Liu J; Wang P; Ma H; Cai R; Wang M; Bian J; Shi Y
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39036893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.