These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 33722241)
1. Examining the role of wind in human illness due to pesticide drift in Washington state, 2000-2015. Kasner EJ; Prado JB; Yost MG; Fenske RA Environ Health; 2021 Mar; 20(1):26. PubMed ID: 33722241 [TBL] [Abstract][Full Text] [Related]
2. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications. Desmarteau DA; Ritter AM; Hendley P; Guevara MW Integr Environ Assess Manag; 2020 Mar; 16(2):197-210. PubMed ID: 31589364 [TBL] [Abstract][Full Text] [Related]
3. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study. Perkins DB; Abi-Akar F; Goodwin G; Brain RA Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378 [TBL] [Abstract][Full Text] [Related]
4. Real-time particle monitoring of pesticide drift from an axial fan airblast orchard sprayer. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E J Expo Sci Environ Epidemiol; 2019 Apr; 29(3):397-405. PubMed ID: 30425317 [TBL] [Abstract][Full Text] [Related]
5. Acute pesticide illnesses associated with off-target pesticide drift from agricultural applications: 11 States, 1998-2006. Lee SJ; Mehler L; Beckman J; Diebolt-Brown B; Prado J; Lackovic M; Waltz J; Mulay P; Schwartz A; Mitchell Y; Moraga-McHaley S; Gergely R; Calvert GM Environ Health Perspect; 2011 Aug; 119(8):1162-9. PubMed ID: 21642048 [TBL] [Abstract][Full Text] [Related]
6. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system. Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339 [TBL] [Abstract][Full Text] [Related]
7. Spray drift as affected by meteorological conditions. Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942 [TBL] [Abstract][Full Text] [Related]
8. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
9. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469 [TBL] [Abstract][Full Text] [Related]
10. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
11. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
12. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data. Allwine KJ; Thistle HW; Teske ME; Anhold J Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131 [TBL] [Abstract][Full Text] [Related]
13. Children's inhalation exposure to methamidophos from sprayed potato fields in Washington State: exploring the use of probabilistic modeling of meteorological data in exposure assessment. Ramaprasad J; Tsai MG; Fenske RA; Faustman EM; Griffith WC; Felsot AS; Elgethun K; Weppner S; Yost MG J Expo Sci Environ Epidemiol; 2009 Sep; 19(6):613-23. PubMed ID: 18957992 [TBL] [Abstract][Full Text] [Related]
14. Environmental attitudes and drift reduction behavior among commercial pesticide applicators in a U.S. agricultural landscape. Reimer AP; Prokopy LS J Environ Manage; 2012 Dec; 113():361-9. PubMed ID: 23062271 [TBL] [Abstract][Full Text] [Related]
15. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. de Snoo GR; de Wit PJ Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699 [TBL] [Abstract][Full Text] [Related]
16. Towards quantifying atmospheric dispersion of pesticide spray drift in Yuma County Arizona. Yuan S; Arellano AF; Knickrehm L; Chang HI; Castro CL; Furlong M Atmos Environ (1994); 2024 Feb; 319():. PubMed ID: 38250567 [TBL] [Abstract][Full Text] [Related]
17. Noticing pesticide spray drift from agricultural pesticide application areas and breast cancer: a case-control study. El-Zaemey S; Heyworth J; Fritschi L Aust N Z J Public Health; 2013 Dec; 37(6):547-55. PubMed ID: 24892153 [TBL] [Abstract][Full Text] [Related]
18. Pesticide exposure, safety issues, and risk assessment indicators. Damalas CA; Eleftherohorinos IG Int J Environ Res Public Health; 2011 May; 8(5):1402-19. PubMed ID: 21655127 [TBL] [Abstract][Full Text] [Related]
20. Comparison of off-target pesticide drift in paddy fields from unmanned aerial vehicle spraying using cellulose deposition sampler. Eun HR; Kim SH; Lee YH; Kim SM; Lee YJ; Jung HY; Min YG; Noh HH; Shin Y Ecotoxicol Environ Saf; 2024 Oct; 285():117075. PubMed ID: 39305778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]