BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33722619)

  • 1. Influence of chemical treatment and drying method on the properties of cellulose fibers of luffa sponge.
    Zhang K; Weng B; Cheng D; Guo Y; Chen T; Wang L; Wang C; Xu R; Chen Y
    Int J Biol Macromol; 2021 Jun; 180():112-120. PubMed ID: 33722619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of potential cellulose fiber from Luffa vine: A study on physicochemical and structural properties.
    Cheng D; Weng B; Chen Y; Zhai S; Wang C; Xu R; Guo J; Lv Y; Shi L; Guo Y
    Int J Biol Macromol; 2020 Dec; 164():2247-2257. PubMed ID: 32798545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Depth Analysis of the Structure and Properties of Two Varieties of Natural Luffa Sponge Fibers.
    Chen Y; Su N; Zhang K; Zhu S; Zhao L; Fang F; Ren L; Guo Y
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing small-scale acetification processes using adsorbed
    Sriphochanart W; Krusong W; Samuela N; Somboon P; Sirisomboon P; Onmankhong J; Pornpukdeewattana S; Charoenrat T
    PeerJ; 2024; 12():e17650. PubMed ID: 38952965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.
    Ruan D; Zhang L; Zhou J; Jin H; Chen H
    Macromol Biosci; 2004 Dec; 4(12):1105-12. PubMed ID: 15586387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of chemically modified Luffa on the preparation of nanofiber and its biological evaluation for biomedical applications.
    Mary Stella S; Vijayalakshmi U
    J Biomed Mater Res A; 2019 Mar; 107(3):610-620. PubMed ID: 30408314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of cellulose/Thespesia lampas short fibers bio-composite films.
    Ashok B; Reddy KO; Madhukar K; Cai J; Zhang L; Rajulu AV
    Carbohydr Polym; 2015; 127():110-5. PubMed ID: 25965463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removing Trypan blue dye using nano-Zn modified Luffa sponge.
    Nadaroglu H; Cicek S; Gungor AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 172():2-8. PubMed ID: 27592334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant.
    Chen Q; Shi Q; Gorb SN; Li Z
    J Biomech; 2014 Apr; 47(6):1332-9. PubMed ID: 24636532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment.
    Kathirselvam M; Kumaravel A; Arthanarieswaran VP; Saravanakumar SS
    Carbohydr Polym; 2019 Aug; 217():178-189. PubMed ID: 31079675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem.
    Raju JSN; Depoures MV; Kumaran P
    Int J Biol Macromol; 2021 Sep; 186():886-896. PubMed ID: 34271053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effects of wetting, drying, and microcrystalline cellulose type on the mechanical strength and disintegration of pellets.
    Balaxi M; Nikolakakis I; Kachrimanis K; Malamataris S
    J Pharm Sci; 2009 Feb; 98(2):676-89. PubMed ID: 18548618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals.
    Siqueira G; Bras J; Follain N; Belbekhouche S; Marais S; Dufresne A
    Carbohydr Polym; 2013 Jan; 91(2):711-7. PubMed ID: 23121968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic examination of the dynamics of water-cellulose interactions on capillary force-induced fiber collapse.
    Salem KS; Naithani V; Jameel H; Lucia L; Pal L
    Carbohydr Polym; 2022 Nov; 295():119856. PubMed ID: 35989003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drying of the Natural Fibers as A Solvent-Free Way to Improve the Cellulose-Filled Polymer Composite Performance.
    Cichosz S; Masek A
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32098150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels.
    Shi J; Lu L; Guo W; Zhang J; Cao Y
    Carbohydr Polym; 2013 Oct; 98(1):282-9. PubMed ID: 23987346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Janus hybrid sustainable all-cellulose nanofiber sponge for oil-water separation.
    Agaba A; Marriam I; Tebyetekerwa M; Yuanhao W
    Int J Biol Macromol; 2021 Aug; 185():997-1004. PubMed ID: 34237368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of salt concentration on the structure and properties of composite fiber of carboxymethyl cellulose/N-2-hydroxylpropyl trimethyl ammonium chloride chitosan prepared by polyelectoyte complexation-freeze drying.
    Chen Y; Liu Y; Xing T; Sun B; Feng Z; Li P; Yang Z; Li S; Chen S
    Int J Biol Macromol; 2020 May; 151():1030-1039. PubMed ID: 31760008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Different Delignification and Drying Methods on Fiber Properties of Moso Bamboo.
    Bai Y; Wang W; Zhang Y; Wang X; Wang X; Shi J
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The preparation and study of regenerated cellulose fibers by cellulose carbamate pathway.
    Teng Y; Yu G; Fu Y; Yin C
    Int J Biol Macromol; 2018 Feb; 107(Pt A):383-392. PubMed ID: 28882759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.