These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 33722728)

  • 1. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images.
    Yabu A; Hoshino M; Tabuchi H; Takahashi S; Masumoto H; Akada M; Morita S; Maeno T; Iwamae M; Inose H; Kato T; Yoshii T; Tsujio T; Terai H; Toyoda H; Suzuki A; Tamai K; Ohyama S; Hori Y; Okawa A; Nakamura H
    Spine J; 2021 Oct; 21(10):1652-1658. PubMed ID: 33722728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Differentiation Between Osteoporotic Vertebral Fracture and Malignant Vertebral Fracture on MRI Using a Deep Convolutional Neural Network.
    Yoda T; Maki S; Furuya T; Yokota H; Matsumoto K; Takaoka H; Miyamoto T; Okimatsu S; Shiga Y; Inage K; Orita S; Eguchi Y; Yamashita T; Masuda Y; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2022 Apr; 47(8):E347-E352. PubMed ID: 34919075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists?
    Li YC; Chen HH; Horng-Shing Lu H; Hondar Wu HT; Chang MC; Chou PH
    Clin Orthop Relat Res; 2021 Jul; 479(7):1598-1612. PubMed ID: 33651768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic radiographic or magnetic resonance images of fresh osteoporotic vertebral fractures predicting potential risk for nonunion: a prospective multicenter study.
    Tsujio T; Nakamura H; Terai H; Hoshino M; Namikawa T; Matsumura A; Kato M; Suzuki A; Takayama K; Fukushima W; Kondo K; Hirota Y; Takaoka K
    Spine (Phila Pa 1976); 2011 Jul; 36(15):1229-35. PubMed ID: 21217433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Vertebral Fractures by Convolutional Neural Networks to Predict Nonvertebral and Hip Fractures: A Registry-based Cohort Study of Dual X-ray Absorptiometry.
    Derkatch S; Kirby C; Kimelman D; Jozani MJ; Davidson JM; Leslie WD
    Radiology; 2019 Nov; 293(2):405-411. PubMed ID: 31526255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Artificial Intelligence to Diagnose Osteoporotic Vertebral Fractures on Plain Radiographs.
    Shen L; Gao C; Hu S; Kang D; Zhang Z; Xia D; Xu Y; Xiang S; Zhu Q; Xu G; Tang F; Yue H; Yu W; Zhang Z
    J Bone Miner Res; 2023 Sep; 38(9):1278-1287. PubMed ID: 37449775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry.
    Monchka BA; Kimelman D; Lix LM; Leslie WD
    Bone; 2021 Sep; 150():116017. PubMed ID: 34020078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The META score for differentiating metastatic from osteoporotic vertebral fractures: an independent agreement assessment.
    Besa P; Urrutia J; Campos M; Mobarec S; Cruz JP; Cikutovic P; Diaz G
    Spine J; 2018 Nov; 18(11):2074-2080. PubMed ID: 29709548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-level spinal osteoporotic fracture prediction combining deep learning vertebral outputs and limited demographic data.
    Cross NM; Perry J; Dong Q; Luo G; Renslo J; Chang BC; Lane NE; Marshall L; Johnston SK; Haynor DR; Jarvik JG; Heagerty PJ
    Arch Osteoporos; 2024 Sep; 19(1):87. PubMed ID: 39256211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does the META score evaluating osteoporotic and metastatic vertebral fractures have enough agreement to be used by orthopaedic surgeons with different levels of training?
    Urrutia J; Besa P; Morales S; Parlange A; Flores S; Campos M; Mobarec S
    Eur Spine J; 2018 Oct; 27(10):2577-2583. PubMed ID: 29995170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep-Learning Model for Diagnosing Fresh Vertebral Fractures on Magnetic Resonance Images.
    Wang YN; Liu G; Wang L; Chen C; Wang Z; Zhu S; Wan WT; Weng YZ; Lu WW; Li ZY; Wang Z; Ma XL; Yang Q
    World Neurosurg; 2024 Mar; 183():e818-e824. PubMed ID: 38218442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study.
    Ogawa T; Yoshii T; Oyama J; Sugimura N; Akada T; Sugino T; Hashimoto M; Morishita S; Takahashi T; Motoyoshi T; Oyaizu T; Yamada T; Onuma H; Hirai T; Inose H; Nakajima Y; Okawa A
    Spine J; 2022 Jun; 22(6):934-940. PubMed ID: 35017056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection and classification of rib fractures based on patients' CT images and clinical information via convolutional neural network.
    Zhou QQ; Tang W; Wang J; Hu ZC; Xia ZY; Zhang R; Fan X; Yong W; Yin X; Zhang B; Zhang H
    Eur Radiol; 2021 Jun; 31(6):3815-3825. PubMed ID: 33201278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.
    Tomita N; Cheung YY; Hassanpour S
    Comput Biol Med; 2018 Jul; 98():8-15. PubMed ID: 29758455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiating Magnetic Resonance Images of Pyogenic Spondylitis and Spinal Modic Change Using a Convolutional Neural Network.
    Mukaihata T; Maki S; Eguchi Y; Geundong K; Shoda J; Yokota H; Orita S; Shiga Y; Inage K; Furuya T; Ohtori S
    Spine (Phila Pa 1976); 2023 Feb; 48(4):288-294. PubMed ID: 36692159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the quality of life in the chronic phase of thoracolumbar osteoporotic vertebral fracture managed conservatively with a brace.
    Inose H; Kato T; Ichimura S; Nakamura H; Hoshino M; Takahashi S; Togawa D; Hirano T; Tokuhashi Y; Ohba T; Haro H; Tsuji T; Sato K; Sasao Y; Takahata M; Otani K; Momoshima S; Hirai T; Yoshii T; Takahashi K; Okawa A
    Spine J; 2023 Mar; 23(3):425-432. PubMed ID: 36400395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based detection of lumbar spinal canal stenosis using convolutional neural networks.
    Suzuki H; Kokabu T; Yamada K; Ishikawa Y; Yabu A; Yanagihashi Y; Hyakumachi T; Tachi H; Shimizu T; Endo T; Ohnishi T; Ukeba D; Nagahama K; Takahata M; Sudo H; Iwasaki N
    Spine J; 2024 Nov; 24(11):2086-2101. PubMed ID: 38909909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of magnetic resonance imaging in the diagnostic and classification process of osteoporotic vertebral fractures.
    Marongiu G; Congia S; Verona M; Lombardo M; Podda D; Capone A
    Injury; 2018 Nov; 49 Suppl 3():S26-S31. PubMed ID: 30415666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.