These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 33723013)
1. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids. Huq NA; Hafenstine GR; Huo X; Nguyen H; Tifft SM; Conklin DR; Stück D; Stunkel J; Yang Z; Heyne JS; Wiatrowski MR; Zhang Y; Tao L; Zhu J; McEnally CS; Christensen ED; Hays C; Van Allsburg KM; Unocic KA; Meyer HM; Abdullah Z; Vardon DR Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33723013 [TBL] [Abstract][Full Text] [Related]
2. Spatially Varying Costs of GHG Abatement with Alternative Cellulosic Feedstocks for Sustainable Aviation Fuels. Fan X; Khanna M; Lee Y; Kent J; Shi R; Guest JS; Lee D Environ Sci Technol; 2024 Jul; 58(26):11352-11362. PubMed ID: 38899559 [TBL] [Abstract][Full Text] [Related]
3. Dataset for techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production. Eswaran S; Subramaniam S; Geleynse S; Brandt K; Wolcott M; Zhang X Data Brief; 2021 Dec; 39():107514. PubMed ID: 34805454 [TBL] [Abstract][Full Text] [Related]
4. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood. Masum FH; Zaimes GG; Tan ECD; Li S; Dutta A; Ramasamy KK; Hawkins TR Environ Sci Technol; 2023 Aug; 57(34):12701-12712. PubMed ID: 37590157 [TBL] [Abstract][Full Text] [Related]
5. Continuous recovery and enhanced yields of volatile fatty acids from a continually-fed 100 L food waste bioreactor by filtration and electrodialysis. Jones RJ; Fernández-Feito R; Massanet-Nicolau J; Dinsdale R; Guwy A Waste Manag; 2021 Mar; 122():81-88. PubMed ID: 33494002 [TBL] [Abstract][Full Text] [Related]
6. Assessing feasible H Karekar SC; Seiple T; Ahring BK; Fuller C J Environ Manage; 2023 Nov; 345():118641. PubMed ID: 37549637 [TBL] [Abstract][Full Text] [Related]
7. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment. Bonk F; Bastidas-Oyanedel JR; Schmidt JE Waste Manag; 2015 Jun; 40():82-91. PubMed ID: 25840736 [TBL] [Abstract][Full Text] [Related]
8. Real-time recovery strategies for volatile fatty acid-inhibited anaerobic digestion of food waste for methane production. Zhang W; Xing W; Li R Bioresour Technol; 2018 Oct; 265():82-92. PubMed ID: 29883850 [TBL] [Abstract][Full Text] [Related]
9. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids. Vajpeyi S; Chandran K Bioresour Technol; 2015; 188():49-55. PubMed ID: 25697838 [TBL] [Abstract][Full Text] [Related]
10. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
11. Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement. Zhang D; Fu X; Jia S; Dai L; Wu B; Dai X Environ Sci Pollut Res Int; 2016 Jan; 23(2):1492-504. PubMed ID: 26374544 [TBL] [Abstract][Full Text] [Related]
12. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R; Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [TBL] [Abstract][Full Text] [Related]
13. Civil aviation emissions in Argentina. Puliafito SE Sci Total Environ; 2023 Apr; 869():161675. PubMed ID: 36669658 [TBL] [Abstract][Full Text] [Related]
14. Spatially-explicit land use change emissions and carbon payback times of biofuels under the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Escobar N; Seber G; Skalsky R; Wögerer M; Jung M; Malina R Sci Total Environ; 2024 Oct; 948():174635. PubMed ID: 38997024 [TBL] [Abstract][Full Text] [Related]
15. Enhancing scalability and economic viability of lignocellulose-derived biofuels production through integrated pretreatment and methanogenesis arrest. Sun J; Zhang L; Loh KC Bioresour Technol; 2023 Dec; 389():129790. PubMed ID: 37820965 [TBL] [Abstract][Full Text] [Related]
16. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
17. Dark fermentation: Production and utilization of volatile fatty acid from different wastes- A review. Pandey AK; Pilli S; Bhunia P; Tyagi RD; Surampalli RY; Zhang TC; Kim SH; Pandey A Chemosphere; 2022 Feb; 288(Pt 1):132444. PubMed ID: 34626658 [TBL] [Abstract][Full Text] [Related]
18. Potential yields and emission reductions of biojet fuels produced via hydrotreatment of biocrudes produced through direct thermochemical liquefaction. van Dyk S; Su J; Ebadian M; O'Connor D; Lakeman M; Saddler JJ Biotechnol Biofuels; 2019; 12():281. PubMed ID: 31827609 [TBL] [Abstract][Full Text] [Related]
19. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels. Kannengiesser J; Sakaguchi-Söder K; Mrukwia T; Jager J; Schebek L Waste Manag; 2016 Jan; 47(Pt A):78-83. PubMed ID: 26117421 [TBL] [Abstract][Full Text] [Related]