BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 33723038)

  • 1. Computationally designed peptide macrocycle inhibitors of New Delhi metallo-β-lactamase 1.
    Mulligan VK; Workman S; Sun T; Rettie S; Li X; Worrall LJ; Craven TW; King DT; Hosseinzadeh P; Watkins AM; Renfrew PD; Guffy S; Labonte JW; Moretti R; Bonneau R; Strynadka NCJ; Baker D
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods.
    Salari-Jazi A; Mahnam K; Sadeghi P; Damavandi MS; Faghri J
    Sci Rep; 2021 Jan; 11(1):2390. PubMed ID: 33504907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A close look onto structural models and primary ligands of metallo-β-lactamases.
    Raczynska JE; Shabalin IG; Minor W; Wlodawer A; Jaskolski M
    Drug Resist Updat; 2018 Sep; 40():1-12. PubMed ID: 30466711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iminodiacetic Acid as a Novel Metal-Binding Pharmacophore for New Delhi Metallo-β-lactamase Inhibitor Development.
    Chen AY; Thomas CA; Thomas PW; Yang K; Cheng Z; Fast W; Crowder MW; Cohen SM
    ChemMedChem; 2020 Jul; 15(14):1272-1282. PubMed ID: 32315115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based virtual screening, molecular docking, and molecular dynamics simulation approaches for identification of new potential inhibitors of class a β-lactamase enzymes.
    Khademi Dehkordi M; Hoveida L; Fani N
    J Biomol Struct Dyn; 2024 Jul; 42(11):5631-5641. PubMed ID: 37534493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding selectivity analysis of new delhi metallo-beta-lactamase-1 inhibitors using molecular dynamics simulations: Exploring possibilities for decoding antimicrobial drug resistance.
    Haque S; Ahmad F; Mathkor DM; Makhdoom H; Johargy AK; Faidah H; Babalghith AO; Jalal NA; Alhindi Z; Bantun F
    J Infect Public Health; 2024 Jun; 17(6):1108-1116. PubMed ID: 38714123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring conformational changes in the NDM-1 metallo-β-lactamase by 19F NMR spectroscopy.
    Rydzik AM; Brem J; van Berkel SS; Pfeffer I; Makena A; Claridge TD; Schofield CJ
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3129-33. PubMed ID: 24615874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases.
    Lee D; Das S; Dawson NL; Dobrijevic D; Ward J; Orengo C
    PLoS Comput Biol; 2016 Jun; 12(6):e1004926. PubMed ID: 27332861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive computational design of ordered peptide macrocycles.
    Hosseinzadeh P; Bhardwaj G; Mulligan VK; Shortridge MD; Craven TW; Pardo-Avila F; Rettie SA; Kim DE; Silva DA; Ibrahim YM; Webb IK; Cort JR; Adkins JN; Varani G; Baker D
    Science; 2017 Dec; 358(6369):1461-1466. PubMed ID: 29242347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expansive discovery of chemically diverse structured macrocyclic oligoamides.
    Salveson PJ; Moyer AP; Said MY; Gӧkçe G; Li X; Kang A; Nguyen H; Bera AK; Levine PM; Bhardwaj G; Baker D
    Science; 2024 Apr; 384(6694):420-428. PubMed ID: 38662830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate de novo design of membrane-traversing macrocycles.
    Bhardwaj G; O'Connor J; Rettie S; Huang YH; Ramelot TA; Mulligan VK; Alpkilic GG; Palmer J; Bera AK; Bick MJ; Di Piazza M; Li X; Hosseinzadeh P; Craven TW; Tejero R; Lauko A; Choi R; Glynn C; Dong L; Griffin R; van Voorhis WC; Rodriguez J; Stewart L; Montelione GT; Craik D; Baker D
    Cell; 2022 Sep; 185(19):3520-3532.e26. PubMed ID: 36041435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quadrivalent influenza nanoparticle vaccines induce broad protection.
    Boyoglu-Barnum S; Ellis D; Gillespie RA; Hutchinson GB; Park YJ; Moin SM; Acton OJ; Ravichandran R; Murphy M; Pettie D; Matheson N; Carter L; Creanga A; Watson MJ; Kephart S; Ataca S; Vaile JR; Ueda G; Crank MC; Stewart L; Lee KK; Guttman M; Baker D; Mascola JR; Veesler D; Graham BS; King NP; Kanekiyo M
    Nature; 2021 Apr; 592(7855):623-628. PubMed ID: 33762730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity.
    Balana AT; Levine PM; Craven TW; Mukherjee S; Pedowitz NJ; Moon SP; Takahashi TT; Becker CFW; Baker D; Pratt MR
    Nat Chem; 2021 May; 13(5):441-450. PubMed ID: 33723378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lasso-grafting of macrocyclic peptide pharmacophores yields multi-functional proteins.
    Mihara E; Watanabe S; Bashiruddin NK; Nakamura N; Matoba K; Sano Y; Maini R; Yin Y; Sakai K; Arimori T; Matsumoto K; Suga H; Takagi J
    Nat Commun; 2021 Mar; 12(1):1543. PubMed ID: 33750839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Pot
    Nagano M; Huang Y; Obexer R; Suga H
    J Am Chem Soc; 2021 Mar; 143(12):4741-4750. PubMed ID: 33733757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites.
    Hosseinzadeh P; Watson PR; Craven TW; Li X; Rettie S; Pardo-Avila F; Bera AK; Mulligan VK; Lu P; Ford AS; Weitzner BD; Stewart LJ; Moyer AP; Di Piazza M; Whalen JG; Greisen PJ; Christianson DW; Baker D
    Nat Commun; 2021 Jun; 12(1):3384. PubMed ID: 34099674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing Inhibitors of β-Lactamase Enzymes to Overcome Carbapenem Resistance in Gram-Negative Bacteria.
    Davies DT; Everett M
    Acc Chem Res; 2021 May; 54(9):2055-2064. PubMed ID: 33788541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of extracellular protein-protein interactions with macrocyclic peptides.
    Taguchi S; Suga H
    Curr Opin Chem Biol; 2021 Jun; 62():82-89. PubMed ID: 33774472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry and fluctuation of cell movements in neural crest-derived facial mesenchyme.
    Danescu A; Rens EG; Rehki J; Woo J; Akazawa T; Fu K; Edelstein-Keshet L; Richman JM
    Development; 2021 May; 148(9):. PubMed ID: 33757991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent domains for recruitment of PRC1 and PRC2 by human XIST.
    Dixon-McDougall T; Brown CJ
    PLoS Genet; 2021 Mar; 17(3):e1009123. PubMed ID: 33750950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.