These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33723067)

  • 21. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock.
    Borg LE; Shearer CK; Asmerom Y; Papike JJ
    Nature; 2004 Nov; 432(7014):209-11. PubMed ID: 15538366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Cl isotope composition and halogen contents of Apollo-return samples.
    Gargano A; Sharp Z; Shearer C; Simon JI; Halliday A; Buckley W
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23418-23425. PubMed ID: 32900968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals.
    Touboul M; Kleine T; Bourdon B; Palme H; Wieler R
    Nature; 2007 Dec; 450(7173):1206-9. PubMed ID: 18097403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon.
    Touboul M; Puchtel IS; Walker RJ
    Nature; 2015 Apr; 520(7548):530-3. PubMed ID: 25855299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogen isotopic evidence for early oxidation of silicate Earth.
    Pahlevan K; Schaefer L; Hirschmann MM
    Earth Planet Sci Lett; 2019 Nov; 526():. PubMed ID: 33688096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse.
    Mendillo M; Baumgardner J
    Nature; 1995 Oct; 377(6548):404-6. PubMed ID: 7566115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Temperature Evaporation and Isotopic Fractionation of K and Cu.
    Neuman M; Holzheid A; Lodders K; Fegley B; Jolliff BL; Koefoed P; Chen H; Wang 王昆 K
    Geochim Cosmochim Acta; 2022 Jan; 316():1-20. PubMed ID: 35001943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A young Moon-forming giant impact at 70-110 million years accompanied by late-stage mixing, core formation and degassing of the Earth.
    Halliday AN
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4163-81. PubMed ID: 18826916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data.
    Andrews-Hanna JC; Besserer J; Head JW; Howett CJ; Kiefer WS; Lucey PJ; McGovern PJ; Melosh HJ; Neumann GA; Phillips RJ; Schenk PM; Smith DE; Solomon SC; Zuber MT
    Nature; 2014 Oct; 514(7520):68-71. PubMed ID: 25279919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.
    Steenstra ES; Lin Y; Dankers D; Rai N; Berndt J; Matveev S; van Westrenen W
    Sci Rep; 2017 Nov; 7(1):14552. PubMed ID: 29109545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Indigenous noble gases in the Moon's interior.
    Will P; Busemann H; Riebe MEI; Maden C
    Sci Adv; 2022 Aug; 8(32):eabl4920. PubMed ID: 35947666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silicon isotopes in angrites and volatile loss in planetesimals.
    Pringle EA; Moynier F; Savage PS; Badro J; Barrat JA
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17029-32. PubMed ID: 25404309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-temperature inter-mineral potassium isotope fractionation: implications for K-Ca-Ar chronology.
    Wilson Kuhnel W; Jacobsen SB; Li Y; Ku Y; Petaev MI; Huang S; Wu Z; Wang 王昆 K
    ACS Earth Space Chem; 2021 Oct; 5(10):2740-2754. PubMed ID: 35005332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior.
    Saal AE; Hauri EH; Cascio ML; Van Orman JA; Rutherford MC; Cooper RF
    Nature; 2008 Jul; 454(7201):192-5. PubMed ID: 18615079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstructing the late-accretion history of the Moon.
    Zhu MH; Artemieva N; Morbidelli A; Yin QZ; Becker H; Wünnemann K
    Nature; 2019 Jul; 571(7764):226-229. PubMed ID: 31292556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High pre-eruptive water contents preserved in lunar melt inclusions.
    Hauri EH; Weinreich T; Saal AE; Rutherford MC; Van Orman JA
    Science; 2011 Jul; 333(6039):213-5. PubMed ID: 21617039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation.
    Carlson RW; Borg LE; Gaffney AM; Boyet M
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130246. PubMed ID: 25114305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contraction or expansion of the Moon's crust during magma ocean freezing?
    Elkins-Tanton LT; Bercovici D
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2024):20130240. PubMed ID: 25114310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lunar crust: structure and composition.
    Toksöz MN; Press F; Anderson K; Dainty A; Latham G; Ewing M; Dorman J; Lammlein D; Sutton G; Duennebier F; Nakamura Y
    Science; 1972 Jun; 176(4038):1012-6. PubMed ID: 17778424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of the Lunar Primary Crust From a Long-Lived Slushy Magma Ocean.
    Michaut C; Neufeld JA
    Geophys Res Lett; 2022 Jan; 49(2):e2021GL095408. PubMed ID: 35865331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.