BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33723238)

  • 1. AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats.
    Zhu S; Ying Y; Ye J; Chen M; Wu Q; Dou H; Ni W; Xu H; Xu J
    Cell Death Dis; 2021 Mar; 12(3):274. PubMed ID: 33723238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The repair and autophagy mechanisms of hypoxia-regulated bFGF-modified primary embryonic neural stem cells in spinal cord injury.
    Zhu S; Chen M; Deng L; Zhang J; Ni W; Wang X; Yao F; Li X; Xu H; Xu J; Xiao J
    Stem Cells Transl Med; 2020 May; 9(5):603-619. PubMed ID: 32027101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mash-1 modified neural stem cells transplantation promotes neural stem cells differentiation into neurons to further improve locomotor functional recovery in spinal cord injury rats.
    Deng M; Xie P; Chen Z; Zhou Y; Liu J; Ming J; Yang J
    Gene; 2021 May; 781():145528. PubMed ID: 33631250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve growth factor (NGF) with hypoxia response elements loaded by adeno-associated virus (AAV) combined with neural stem cells improve the spinal cord injury recovery.
    Wu Q; Xiang Z; Ying Y; Huang Z; Tu Y; Chen M; Ye J; Dou H; Sheng S; Li X; Ying W; Zhu S
    Cell Death Discov; 2021 Oct; 7(1):301. PubMed ID: 34675188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow-derived mesenchymal stem cells expressing the bFGF transgene promote axon regeneration and functional recovery after spinal cord injury in rats.
    Liu WG; Wang ZY; Huang ZS
    Neurol Res; 2011 Sep; 33(7):686-93. PubMed ID: 21756547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or Raf inhibition on spinal cord injury in rats.
    Feng S; Wang S; Sun S; Su H; Zhang L
    Mol Med Rep; 2021 Apr; 23(4):. PubMed ID: 33649786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of NEP1-40 and NT-3 Gene-Co-Transduced Neural Stem Cells Improves Function and Neurogenesis after Spinal Cord Injury in a Rat Model.
    Chen F; Zhang Z; Wang LN; Yang X; Zhou CG; Zhu C; Wang L; Liu LM; Song YM
    Neurol India; 2022; 70(Supplement):S251-S258. PubMed ID: 36412377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [TRANSPLANTATION OF NEURAL STEM CELLS INDUCED BY ALL-TRANS- RETINOIC ACID COMBINED WITH GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR AND CHONDROITINASE ABC FOR REPAIRING SPINAL CORD INJURY OF RATS].
    Liao Y; Zhong D; Kang M; Yao S; Zhang Y; Yu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1009-15. PubMed ID: 26677625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined treatment of high-intensity interval training with neural stem cell generation on contusive model of spinal cord injury in rats.
    Keikhaei R; Abdi E; Darvishi M; Ghotbeddin Z; Hamidabadi HG
    Brain Behav; 2023 Jul; 13(7):e3043. PubMed ID: 37165750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-124 regulates neural stem cells in the treatment of spinal cord injury.
    Xu W; Li P; Qin K; Wang X; Jiang X
    Neurosci Lett; 2012 Oct; 529(1):12-7. PubMed ID: 22999930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of Nogo extracellular peptide residues 1-40 gene modification on survival and differentiation of neural stem cells after transplantation].
    Wang L; Song Y; Yuan H; Liu L; Gong Q; Kong Q; Yang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Nov; 27(11):1368-74. PubMed ID: 24501899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of neural stem cells preconditioned with high‑mobility group box 1 facilitates functional recovery after spinal cord injury in rats.
    Xue X; Zhang L; Yin X; Chen XX; Chen ZF; Wang CX; Xiang Y; Liu MY; Zhao JH
    Mol Med Rep; 2020 Dec; 22(6):4725-4733. PubMed ID: 33174002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen scaffolds modified with collagen-binding bFGF promotes the neural regeneration in a rat hemisected spinal cord injury model.
    Shi Q; Gao W; Han X; Zhu X; Sun J; Xie F; Hou X; Yang H; Dai J; Chen L
    Sci China Life Sci; 2014 Feb; 57(2):232-40. PubMed ID: 24445989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.
    Jia Y; Wu D; Zhang R; Shuang W; Sun J; Hao H; An Q; Liu Q
    Neurosci Lett; 2014 Jun; 573():46-51. PubMed ID: 24837681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpressing neuroglobin improves functional recovery by inhibiting neuronal apoptosis after spinal cord injury.
    Lan WB; Lin JH; Chen XW; Wu CY; Zhong GX; Zhang LQ; Lin WP; Liu WN; Li X; Lin JL
    Brain Res; 2014 May; 1562():100-8. PubMed ID: 24675030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C; Torres-Espín A; Hernández J; Alvarez-Palomo AB; Requena J; Gasull X; Edel MJ; Navarro X
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplantation of a Peripheral Nerve with Neural Stem Cells Plus Lithium Chloride Injection Promote the Recovery of Rat Spinal Cord Injury.
    Zhang LQ; Zhang WM; Deng L; Xu ZX; Lan WB; Lin JH
    Cell Transplant; 2018 Mar; 27(3):471-484. PubMed ID: 29756516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.