BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33723261)

  • 1. Threats of global warming to the world's freshwater fishes.
    Barbarossa V; Bosmans J; Wanders N; King H; Bierkens MFP; Huijbregts MAJ; Schipper AM
    Nat Commun; 2021 Mar; 12(1):1701. PubMed ID: 33723261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.
    Kano Y; Dudgeon D; Nam S; Samejima H; Watanabe K; Grudpan C; Grudpan J; Magtoon W; Musikasinthorn P; Nguyen PT; Praxaysonbath B; Sato T; Shibukawa K; Shimatani Y; Suvarnaraksha A; Tanaka W; Thach P; Tran DD; Yamashita T; Utsugi K
    PLoS One; 2016; 11(8):e0160151. PubMed ID: 27532150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change threats to the global functional diversity of freshwater fish.
    Scherer L; Boom HA; Barbarossa V; van Bodegom PM
    Glob Chang Biol; 2023 Jul; 29(13):3781-3793. PubMed ID: 37070402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal biases and vulnerability to warming in the world's marine fauna.
    Stuart-Smith RD; Edgar GJ; Barrett NS; Kininmonth SJ; Bates AE
    Nature; 2015 Dec; 528(7580):88-92. PubMed ID: 26560025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.
    Lyons J; Stewart JS; Mitro M
    J Fish Biol; 2010 Nov; 77(8):1867-98. PubMed ID: 21078096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations.
    Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA
    Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different ecophysiological responses of freshwater fish to warming and acidification.
    Jesus TF; Rosa IC; Repolho T; Lopes AR; Pimentel MS; Almeida-Val VMF; Coelho MM; Rosa R
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Feb; 216():34-41. PubMed ID: 29158138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional reorganization of marine fish nurseries under climate warming.
    McLean MJ; Mouillot D; Goascoz N; Schlaich I; Auber A
    Glob Chang Biol; 2019 Feb; 25(2):660-674. PubMed ID: 30367735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-linear loss of suitable wine regions over Europe in response to increasing global warming.
    Sgubin G; Swingedouw D; Mignot J; Gambetta GA; Bois B; Loukos H; Noël T; Pieri P; García de Cortázar-Atauri I; Ollat N; van Leeuwen C
    Glob Chang Biol; 2023 Feb; 29(3):808-826. PubMed ID: 36376998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does thermal history influence thermal tolerance of the freshwater fish Galaxias zebratus in a global biodiversity hotspot?
    Olsen T; Shelton JM; Dallas HF
    J Therm Biol; 2021 Apr; 97():102890. PubMed ID: 33863447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple threats imperil freshwater biodiversity in the Anthropocene.
    Dudgeon D
    Curr Biol; 2019 Oct; 29(19):R960-R967. PubMed ID: 31593677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).
    Pandit SN; Maitland BM; Pandit LK; Poesch MS; Enders EC
    Sci Total Environ; 2017 Nov; 598():1-11. PubMed ID: 28433817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming.
    Sun Q; Miao C; Hanel M; Borthwick AGL; Duan Q; Ji D; Li H
    Environ Int; 2019 Jul; 128():125-136. PubMed ID: 31048130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity.
    Tisseuil C; Vrac M; Grenouillet G; Wade AJ; Gevrey M; Oberdorff T; Grodwohl JB; Lek S
    Sci Total Environ; 2012 May; 424():193-201. PubMed ID: 22425276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging threats and persistent conservation challenges for freshwater biodiversity.
    Reid AJ; Carlson AK; Creed IF; Eliason EJ; Gell PA; Johnson PTJ; Kidd KA; MacCormack TJ; Olden JD; Ormerod SJ; Smol JP; Taylor WW; Tockner K; Vermaire JC; Dudgeon D; Cooke SJ
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):849-873. PubMed ID: 30467930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics.
    Jarić I; Lennox RJ; Kalinkat G; Cvijanović G; Radinger J
    Glob Chang Biol; 2019 Feb; 25(2):448-458. PubMed ID: 30417977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change exacerbates interspecific interactions in sympatric coastal fishes.
    Milazzo M; Mirto S; Domenici P; Gristina M
    J Anim Ecol; 2013 Mar; 82(2):468-77. PubMed ID: 23039273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced hypoxia tolerance and survival at elevated temperatures may limit the ability of Amazonian fishes to survive in a warming world.
    Jung EH; Brix KV; Richards JG; Val AL; Brauner CJ
    Sci Total Environ; 2020 Dec; 748():141349. PubMed ID: 32818889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drainage network position and historical connectivity explain global patterns in freshwater fishes' range size.
    Carvajal-Quintero J; Villalobos F; Oberdorff T; Grenouillet G; Brosse S; Hugueny B; Jézéquel C; Tedesco PA
    Proc Natl Acad Sci U S A; 2019 Jul; 116(27):13434-13439. PubMed ID: 31209040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate impacts on global hot spots of marine biodiversity.
    Ramírez F; Afán I; Davis LS; Chiaradia A
    Sci Adv; 2017 Feb; 3(2):e1601198. PubMed ID: 28261659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.