BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33723882)

  • 1. Extension of a de novo TIM barrel with a rationally designed secondary structure element.
    Wiese JG; Shanmugaratnam S; Höcker B
    Protein Sci; 2021 May; 30(5):982-989. PubMed ID: 33723882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-based approach to extend a de novo TIM barrel with rationally designed helix-loop-helix motifs.
    Kordes S; Beck J; Shanmugaratnam S; Flecks M; Höcker B
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37707513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversifying de novo TIM barrels by hallucination.
    Beck J; Shanmugaratnam S; Höcker B
    Protein Sci; 2024 Jun; 33(6):e5001. PubMed ID: 38723111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy.
    Huang PS; Feldmeier K; Parmeggiani F; Velasco DAF; Höcker B; Baker D
    Nat Chem Biol; 2016 Jan; 12(1):29-34. PubMed ID: 26595462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach.
    Romero-Romero S; Costas M; Silva Manzano DA; Kordes S; Rojas-Ortega E; Tapia C; Guerra Y; Shanmugaratnam S; Rodríguez-Romero A; Baker D; Höcker B; Fernández-Velasco DA
    J Mol Biol; 2021 Sep; 433(18):167153. PubMed ID: 34271011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Design of a Highly Stable Ovoid TIM Barrel: Unlocking Pocket Shape towards Functional Design.
    Chu AE; Fernandez D; Liu J; Eguchi RR; Huang PS
    Biodes Res; 2022; 2022():9842315. PubMed ID: 37850141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative splice variants in TIM barrel proteins from human genome correlate with the structural and evolutionary modularity of this versatile protein fold.
    Ochoa-Leyva A; Montero-Morán G; Saab-Rincón G; Brieba LG; Soberón X
    PLoS One; 2013; 8(8):e70582. PubMed ID: 23950966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepwise introduction of stabilizing mutations reveals nonlinear additive effects in de novo TIM barrels.
    Koch JS; Romero-Romero S; Höcker B
    Protein Sci; 2024 Mar; 33(3):e4926. PubMed ID: 38380781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of symmetric TIM barrel proteins from first principles.
    Nagarajan D; Deka G; Rao M
    BMC Biochem; 2015 Aug; 16():18. PubMed ID: 26264284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly related glycosyl hydrolases.
    Sharma P; Kaila P; Guptasarma P
    FEBS J; 2016 Dec; 283(23):4340-4356. PubMed ID: 27749025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold.
    Kadumuri RV; Vadrevu R
    Interdiscip Sci; 2018 Dec; 10(4):805-812. PubMed ID: 29064074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation of the folding mechanism between designed primordial (βα)8-barrel proteins and their modern descendant.
    Carstensen L; Sperl JM; Bocola M; List F; Schmid FX; Sterner R
    J Am Chem Soc; 2012 Aug; 134(30):12786-91. PubMed ID: 22758610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion.
    Caldwell SJ; Haydon IC; Piperidou N; Huang PS; Bick MJ; Sjöström HS; Hilvert D; Baker D; Zeymer C
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30362-30369. PubMed ID: 33203677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo design of small beta barrel proteins.
    Kim DE; Jensen DR; Feldman D; Tischer D; Saleem A; Chow CM; Li X; Carter L; Milles L; Nguyen H; Kang A; Bera AK; Peterson FC; Volkman BF; Ovchinnikov S; Baker D
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2207974120. PubMed ID: 36897987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the fold organization of TIM barrel from interaction energy based structure networks.
    Vijayabaskar MS; Vishveshwara S
    PLoS Comput Biol; 2012; 8(5):e1002505. PubMed ID: 22615547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Betaalpha-hairpin clamps brace betaalphabeta modules and can make substantive contributions to the stability of TIM barrel proteins.
    Yang X; Kathuria SV; Vadrevu R; Matthews CR
    PLoS One; 2009 Sep; 4(9):e7179. PubMed ID: 19787060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TIM-Finder: a new method for identifying TIM-barrel proteins.
    Si JN; Yan RX; Wang C; Zhang Z; Su XD
    BMC Struct Biol; 2009 Dec; 9():73. PubMed ID: 20003393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative model of EutB from coenzyme B12-dependent ethanolamine ammonia-lyase reveals a beta8alpha8, TIM-barrel fold and radical catalytic site structural features.
    Sun L; Warncke K
    Proteins; 2006 Aug; 64(2):308-19. PubMed ID: 16688781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 A) at 100 K and atomic resolution (1.11 A) at 293 K refined anisotropically to small-molecule accuracy.
    Natesh R; Manikandan K; Bhanumoorthy P; Viswamitra MA; Ramakumar S
    Acta Crystallogr D Biol Crystallogr; 2003 Jan; 59(Pt 1):105-17. PubMed ID: 12499546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA lyases suggest a common catalytic mechanism among a family of TIM barrel metalloenzymes cleaving carbon-carbon bonds.
    Forouhar F; Hussain M; Farid R; Benach J; Abashidze M; Edstrom WC; Vorobiev SM; Xiao R; Acton TB; Fu Z; Kim JJ; Miziorko HM; Montelione GT; Hunt JF
    J Biol Chem; 2006 Mar; 281(11):7533-45. PubMed ID: 16330546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.