These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33723992)

  • 1. Chemistry Informer Libraries: Conception, Early Experience, and Role in the Future of Cheminformatics.
    Dreher SD; Krska SW
    Acc Chem Res; 2021 Apr; 54(7):1586-1596. PubMed ID: 33723992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.
    Krska SW; DiRocco DA; Dreher SD; Shevlin M
    Acc Chem Res; 2017 Dec; 50(12):2976-2985. PubMed ID: 29172435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods.
    Kutchukian PS; Dropinski JF; Dykstra KD; Li B; DiRocco DA; Streckfuss EC; Campeau LC; Cernak T; Vachal P; Davies IW; Krska SW; Dreher SD
    Chem Sci; 2016 Apr; 7(4):2604-2613. PubMed ID: 28660032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Informer Sets in Screening: Perspectives on an Efficient Strategy to Identify New Probes.
    Clemons PA; Bittker JA; Wagner FF; Hands A; Dančík V; Schreiber SL; Choudhary A; Wagner BK
    SLAS Discov; 2021 Aug; 26(7):855-861. PubMed ID: 34130532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting kinase inhibitors using bioactivity matrix derived informer sets.
    Zhang H; Ericksen SS; Lee CP; Ananiev GE; Wlodarchak N; Yu P; Mitchell JC; Gitter A; Wright SJ; Hoffmann FM; Wildman SA; Newton MA
    PLoS Comput Biol; 2019 Aug; 15(8):e1006813. PubMed ID: 31381559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Student and educator experiences of maternal-child simulation-based learning: a systematic review of qualitative evidence protocol.
    MacKinnon K; Marcellus L; Rivers J; Gordon C; Ryan M; Butcher D
    JBI Database System Rev Implement Rep; 2015 Jan; 13(1):14-26. PubMed ID: 26447004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building a Toolbox for the Analysis and Prediction of Ligand and Catalyst Effects in Organometallic Catalysis.
    Durand DJ; Fey N
    Acc Chem Res; 2021 Feb; 54(4):837-848. PubMed ID: 33533587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
    O'Reilly RK; Turberfield AJ; Wilks TR
    Acc Chem Res; 2017 Oct; 50(10):2496-2509. PubMed ID: 28915003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular reaction screening as a tool for reaction evaluation.
    Collins KD; Glorius F
    Acc Chem Res; 2015 Mar; 48(3):619-27. PubMed ID: 25699585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh-Throughput Experimentation for Information-Rich Chemical Synthesis.
    Mahjour B; Shen Y; Cernak T
    Acc Chem Res; 2021 May; 54(10):2337-2346. PubMed ID: 33891404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Library design practices for success in lead generation with small molecule libraries.
    Goodnow RA; Guba W; Haap W
    Comb Chem High Throughput Screen; 2003 Nov; 6(7):649-60. PubMed ID: 14683492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High impact technologies for natural products screening.
    Koehn FE
    Prog Drug Res; 2008; 65():175, 177-210. PubMed ID: 18084916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.
    Allen D; Gillen E; Rixson L
    JBI Libr Syst Rev; 2009; 7(3):80-129. PubMed ID: 27820426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Merging Directed C-H Activations with High-Throughput Experimentation: Development of Iridium-Catalyzed C-H Aminations Applicable to Late-Stage Functionalization.
    Weis E; Johansson M; Korsgren P; Martín-Matute B; Johansson MJ
    JACS Au; 2022 Apr; 2(4):906-916. PubMed ID: 35557751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
    Sinclair P; Kable A; Levett-Jones T
    JBI Database System Rev Implement Rep; 2015 Jan; 13(1):52-64. PubMed ID: 26447007
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.