These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33724010)

  • 21. Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity.
    Li H; Tian J; Xiao F; Huang R; Gao S; Cui F; Wang S; Duan X
    J Hazard Mater; 2020 Mar; 385():121518. PubMed ID: 31704121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zinc ion mediated synthesis of cuprous oxide crystals for non-enzymatic glucose detection.
    Lv J; Kong C; Hu X; Zhang X; Liu K; Yang S; Bi J; Liu X; Meng G; Li J; Yang Z; Yang S
    J Mater Chem B; 2017 Nov; 5(44):8686-8694. PubMed ID: 32264262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe.
    Seo D; Park G; Song H
    J Am Chem Soc; 2012 Jan; 134(2):1221-7. PubMed ID: 22176153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth of Cuprous Oxide Particles in Liquid-Phase Synthesis Investigated by X-ray Laser Diffraction.
    Oroguchi T; Yoshidome T; Yamamoto T; Nakasako M
    Nano Lett; 2018 Aug; 18(8):5192-5197. PubMed ID: 29990436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor.
    Chen A; Ding Y; Yang Z; Yang S
    Biosens Bioelectron; 2015 Dec; 74():967-73. PubMed ID: 26258877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol.
    Periasamy AP; Ravindranath R; Senthil Kumar SM; Wu WP; Jian TR; Chang HT
    Nanoscale; 2018 Jul; 10(25):11869-11880. PubMed ID: 29897084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional Channel of SWCNTs/Cu
    Chen HC; Su WR; Yeh YC
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32905-32914. PubMed ID: 32639739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-situ synthesis of Cu
    Su X; Chen W; Han Y; Wang D; Yao J
    Appl Surf Sci; 2021 Jan; 536():147945. PubMed ID: 33012933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.
    Brittman S; Yoo Y; Dasgupta NP; Kim SI; Kim B; Yang P
    Nano Lett; 2014 Aug; 14(8):4665-70. PubMed ID: 25014113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ measurements of ion-exchange processes in single polymer particles:  laser trapping microspectroscopy and confocal fluorescence microspectroscopy.
    Kim HB; Hayashi M; Nakatani K; Kitamura N; Sasaki K; Hotta J; Masuhara H
    Anal Chem; 1996 Feb; 68(3):409-14. PubMed ID: 21619079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Andean Sacha Inchi (
    Kumar B; Smita K; Debut A; Cumbal L
    Bioengineering (Basel); 2020 Jun; 7(2):. PubMed ID: 32517252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sonochemical preparation of carbon nanosheets supporting cuprous oxide architecture for high-performance and non-enzymatic electrochemical sensor in biological samples.
    Chen TW; Rajaji U; Chen SM; Wang JY; Abdullah Alothman Z; Ajmal Ali M; Mohammad Wabaidur S; Al-Hemaid F; Lee SY; Chang WH
    Ultrason Sonochem; 2020 Sep; 66():105072. PubMed ID: 32229388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor.
    Nguyen TT; Huy BT; Hwang SY; Vuong NM; Pham QT; Nghia NN; Kirtland A; Lee YI
    Nanotechnology; 2018 May; 29(20):205501. PubMed ID: 29480163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gallium Doping Effects for Improving Switching Performance of p-Type Copper(I) Oxide Thin-Film Transistors.
    Bae JH; Lee JH; Park SP; Jung TS; Kim HJ; Kim D; Lee SW; Park KS; Yoon S; Kang I; Kim HJ
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38350-38356. PubMed ID: 32706244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions.
    Wu HL; Sato R; Yamaguchi A; Kimura M; Haruta M; Kurata H; Teranishi T
    Science; 2016 Mar; 351(6279):1306-10. PubMed ID: 26989249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Template synthesis of the Cu
    Li Y; Cai R; Lü R; Gao L; Qin S
    R Soc Open Sci; 2018 Dec; 5(12):181474. PubMed ID: 30662752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of cuprous oxide with morphological evolution from truncated octahedral to spherical structures and their size and shape-dependent photocatalytic activities.
    Jiang D; Xing C; Liang X; Shao L; Chen M
    J Colloid Interface Sci; 2016 Jan; 461():25-31. PubMed ID: 26397905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of Cu
    Zhang Y; Chen Y; Li J; Li W; Chen D; Qin Q
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32019192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-situ chemical vapor deposition to fabricate Cuprous oxide/copper sulfide core-shell flowers with boosted and stable wide-spectral region photocatalytic performance.
    Fu Y; Li Q; Liu J; Jiao Y; Hu S; Wang H; Xu S; Jiang B
    J Colloid Interface Sci; 2020 Jun; 570():143-152. PubMed ID: 32146241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanostructured Cu
    McWilliams S; Flynn CD; McWilliams J; Arnold DC; Wahyuono RA; Undisz A; Rettenmayr M; Ignaszak A
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31847448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.