BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33724105)

  • 1. Simulation of the mechanical behavior of osteons using artificial gravity devices in microgravity.
    Zhang H; Liu HY; Zhang CQ; Liu ZZ; Wang W
    Comput Methods Biomech Biomed Engin; 2021 Nov; 24(14):1578-1587. PubMed ID: 33724105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis of the flow field in the lacunar-canalicular system under different magnitudes of gravity.
    Zhao S; Liu H; Li Y; Song Y; Wang W; Zhang C
    Med Biol Eng Comput; 2020 Mar; 58(3):509-518. PubMed ID: 31900816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation study on the effect of resistance exercise on the hydrodynamic microenvironment of osteocytes in microgravity.
    Liu HY; Zhao CH; Zhang H; Wang W; Liu QJ
    Comput Methods Biomech Biomed Engin; 2022 Nov; 25(15):1757-1766. PubMed ID: 35170387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on solute transport behaviors in the lacunar-canalicular system using numerical simulation in microgravity.
    Liu HY; Zhao S; Zhang H; Huang SY; Peng WT; Zhang CQ; Wang W
    Comput Biol Med; 2020 Apr; 119():103700. PubMed ID: 32339112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields.
    Wang H; Gao L; Chen X; Zhang C
    J Bone Miner Metab; 2022 Nov; 40(6):940-950. PubMed ID: 36350408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lack of mass transfer in bone lacunar-canalicular system may be the decisive factor of osteoporosis under microgravity.
    Wang H; Liu H; Wang X; Zhang C
    Life Sci Space Res (Amst); 2021 Nov; 31():80-84. PubMed ID: 34689953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields.
    Wang H; Wang J; Lyu L; Wei S; Zhang C
    Comput Methods Biomech Biomed Engin; 2024; 27(4):478-488. PubMed ID: 36912751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial gravity in space and in medical research.
    Cardús D
    J Gravit Physiol; 1994 May; 1(1):P19-22. PubMed ID: 11538748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of gravity on fluid flow and solute transport in the bone lacunar-canalicular system: a multiscale numerical simulation study.
    Xing C; Wang H; Zhu J; Zhang C; Li X
    Comput Methods Biomech Biomed Engin; 2023 Oct; ():1-10. PubMed ID: 37842849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight.
    Hargens AR; Bhattacharya R; Schneider SM
    Eur J Appl Physiol; 2013 Sep; 113(9):2183-92. PubMed ID: 23079865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomedical aspects of artificial gravity.
    Vil-Viliams IF; Kotovskaya AR; Shipov AA
    J Gravit Physiol; 1997 Jul; 4(2):P27-8. PubMed ID: 11540685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions.
    Clément GR; Bukley AP; Paloski WH
    Front Syst Neurosci; 2015; 9():92. PubMed ID: 26136665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computer simulation of short-term adaptations of cardiovascular hemodynamics in microgravity.
    Gerber B; Singh JL; Zhang Y; Liou W
    Comput Biol Med; 2018 Nov; 102():86-94. PubMed ID: 30253272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomic neural functions in space.
    Mano T
    Curr Pharm Biotechnol; 2005 Aug; 6(4):319-24. PubMed ID: 16101470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modern view on the short-arm centrifuge as a potential generator of artificial gravity in piloted missions.
    Vil-Viliams IF; Kotovskaya AR; Nikolashin GF; Lukjanuk VJ
    J Gravit Physiol; 2001 Jul; 8(1):P145-6. PubMed ID: 12650207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibody binding in altered gravity: implications for immunosorbent assay during space flight.
    Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS
    J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency.
    Sharma D; Ciani C; Marin PA; Levy JD; Doty SB; Fritton SP
    Bone; 2012 Sep; 51(3):488-97. PubMed ID: 22634177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighing the impact of microgravity on vestibular and visual functions.
    Dontre AJ
    Life Sci Space Res (Amst); 2024 Feb; 40():51-61. PubMed ID: 38245348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biomedical problems of artificial gravity: overview and challenge].
    Zhang LF
    Space Med Med Eng (Beijing); 2001 Feb; 14(1):70-4. PubMed ID: 11712562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-scale numerical simulation on mechano-transduction of osteocytes in different gravity fields.
    Zhao C; Liu H; Tian C; Zhang C; Wang W
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(12):1419-1430. PubMed ID: 36048419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.