These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 33724208)

  • 1. Research progress of prophages.
    Chen X; Wei Y; Ji X
    Yi Chuan; 2021 Mar; 43(3):240-248. PubMed ID: 33724208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation.
    Nawel Z; Rima O; Amira B
    Microb Pathog; 2022 Apr; 165():105490. PubMed ID: 35307601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion.
    Brüssow H; Canchaya C; Hardt WD
    Microbiol Mol Biol Rev; 2004 Sep; 68(3):560-602, table of contents. PubMed ID: 15353570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny.
    McCullor K; Postoak B; Rahman M; King C; McShan WM
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence.
    Tuttle MJ; Buchan A
    Environ Microbiol; 2020 Dec; 22(12):4919-4933. PubMed ID: 32935433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of prophages to evolution and virulence of bacterial pathogens.
    Fortier LC; Sekulovic O
    Virulence; 2013 Jul; 4(5):354-65. PubMed ID: 23611873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of temperate bacteriophages in bacterial infection.
    Davies EV; Winstanley C; Fothergill JL; James CE
    FEMS Microbiol Lett; 2016 Mar; 363(5):fnw015. PubMed ID: 26825679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence.
    Taylor VL; Fitzpatrick AD; Islam Z; Maxwell KL
    Adv Virus Res; 2019; 103():1-31. PubMed ID: 30635074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial genome remodeling through bacteriophage recombination.
    Menouni R; Hutinet G; Petit MA; Ansaldi M
    FEMS Microbiol Lett; 2015 Jan; 362(1):1-10. PubMed ID: 25790500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem.
    Oh JH; Lin XB; Zhang S; Tollenaar SL; Özçam M; Dunphy C; Walter J; van Pijkeren JP
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31676478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting of temperate phages drives loss of type I CRISPR-Cas systems.
    Rollie C; Chevallereau A; Watson BNJ; Chyou TY; Fradet O; McLeod I; Fineran PC; Brown CM; Gandon S; Westra ER
    Nature; 2020 Feb; 578(7793):149-153. PubMed ID: 31969710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny.
    Guerrero-Bustamante CA; Hatfull GF
    mBio; 2024 Feb; 15(2):e0326023. PubMed ID: 38236026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-Regulation between Bacteria and Phages at a Posttranscriptional Level.
    Altuvia S; Storz G; Papenfort K
    Microbiol Spectr; 2018 Jul; 6(4):. PubMed ID: 30006994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage as agents of lateral gene transfer.
    Canchaya C; Fournous G; Chibani-Chennoufi S; Dillmann ML; Brüssow H
    Curr Opin Microbiol; 2003 Aug; 6(4):417-24. PubMed ID: 12941415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysogeny is prevalent and widely distributed in the murine gut microbiota.
    Kim MS; Bae JW
    ISME J; 2018 Apr; 12(4):1127-1141. PubMed ID: 29416123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering Active Prophages from Metagenomes.
    Kieft K; Anantharaman K
    mSystems; 2022 Apr; 7(2):e0008422. PubMed ID: 35323045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptic prophages as targets for drug development.
    Wang X; Wood TK
    Drug Resist Updat; 2016 Jul; 27():30-8. PubMed ID: 27449596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas?
    Paul JH
    ISME J; 2008 Jun; 2(6):579-89. PubMed ID: 18521076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A window into lysogeny: revealing temperate phage biology with transcriptomics.
    Owen SV; Canals R; Wenner N; Hammarlöf DL; Kröger C; Hinton JCD
    Microb Genom; 2020 Feb; 6(2):. PubMed ID: 32022660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of Pseudomonas aeruginosa Temperate Phages.
    Johnson G; Banerjee S; Putonti C
    mSphere; 2022 Feb; 7(1):e0101521. PubMed ID: 35196122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.